智慧來自於經驗、而經驗是資料的累積,資料科學的目的就是要從看似紛亂的資料堆中,找出資料交集的線索、挖掘出各種有用的資訊,進而歸納整理成知識和智慧。
用對工具、找對方法,立即從日常資料中挖掘過去、預測未來!
從大數據到人工智慧世代,其背後蘊含的關鍵技術與理論不脫資料科學的範疇。本書就要帶領您使用最容易上手的 Python 語言搭配本土化的資料集,一一探索、實踐資料科學和人工智慧的觀念與理論,從網路爬蟲、資料清理、資料視覺化、資料採礦到最熱門的機器學習,全面整合實作與理論,開啟你成為資料科學家的成功之路!
本書特色 :
● 資料科學三部曲:取得資料 → 探索事實 → 預測分析
● 一次補足最入門的統計和機率基礎
● Python 開發環境與基礎語法快速上手
● 實踐資料科學的三大套件:NumPy、Pandas、Matplotlib 一次掌握
● 從網頁爬蟲、資料清理到資料視覺化,快速完成資料探索的預處理程序
● 用 Scikit-learn 套件實作最熱門的 AI 機器學習應用
目錄
第一篇 資料科學和 Python 基礎
第 1 章 資料科學概論與開發環境建立
第 2 章 Python 程式語言
第 3 章 HTML 網頁結構與 JSON
第二篇 網頁爬蟲和 Open Data — 取得資料
第 4 章 取得網路資料
第 5 章 資料擷取
第 6 章 資料清理與儲存
第 7 章 網頁爬蟲實作案例
第三篇 Python 資料科學套件 - 探索資料
第 8 章 向量與矩陣運算–NumPy 套件
第 9 章 資料處理與分析–Pandas 套件
第 10 章 資料視覺化–Matplotlib 套件
第 11 章 機率與統計
第 12 章 估計與檢定
第 13 章 探索性資料分析實作案例
第四篇 人工智慧與機器學習—預測資料
第 14 章 人工智慧與機器學習概論
第 15 章 機器學習演算法實作案例–迴歸
第 16 章 機器學習演算法實作案例–分類與分群
附錄 A 下載與安裝 MongoDB 資料庫
第一篇 資料科學和 Python 基礎
第 1 章 資料科學概論與開發環境建立
第 2 章 Python 程式語言
第 3 章 HTML 網頁結構與 JSON
第二篇 網頁爬蟲和 Open Data — 取得資料
第 4 章 取得網路資料
第 5 章 資料擷取
第 6 章 資料清理與儲存
第 7 章 網頁爬蟲實作案例
第三篇 Python 資料科學套件 - 探索資料
第 8 章 向量與矩陣運算–NumPy 套件
第 9 章 資料處理與分析–Pandas 套件
第 10 章 資料視覺化–Matplotlib 套件
第 11 章 機率與統計
第 12 章 估計與檢定
第 13 章 探索性資料分析實作案例
第四篇 人工智慧與...
購物須知
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱
退換貨原則、
二手CD、DVD退換貨說明。