作者:廖珮妤
定價:NT$ 560
優惠價: 75 折, NT$ 420
【本書特色】
最貼近新手的深度學習理論及應用全方位入門書!
✪學習必備理論,打好基礎,新手不怕被過多的數學式嚇跑。
✪使用PyTorch直覺易懂且強大的深度學習框架,開始應用的第一步。
✪了解自然語言處理、電腦視覺與強化學習等三大領域經典應用與實作,領略深度學習的強大。
✪兼顧理論與實作,而非偏頗一方,培養讀者較全面的理解。
✪包含經典學術論文與知名專案技術講解,幫助讀者掌握此技術所能到達的高度。
✪每章末提供自我檢驗題目,幫助理解與統整各章概念。
【內容簡介】
本書內容改編自第12屆iT邦幫忙鐵人賽AI & Data組冠軍系列文章《Knock Knock!Deep Learning》,是專為深度學習初學者所規劃的內容,旨在以淺顯易懂的文字,帶領深度學習領域的新手度過入門撞牆期。內容從深度學習的基本理論開始,並以PyTorch框架的介紹過渡至應用篇,最後以自然語言處理、電腦視覺與強化學習等三大領域的經典論文與實作專案收尾,循序漸進且去蕪存菁。本書會帶入許多故事性的敘述和插圖,結合作者自身在史丹佛大學修讀碩士期間的學習心得,以及深度學習發展相關的故事,期使本書讀起來不會如教科書一樣厚重,亦不會像網路上的技術文章一般零散無脈絡,讓讀者對深度學習領域的發展有一定的概念。
【內容重點】
✪了解深度學習的基礎理論以及必備的實作知識與工具
內容從人類的神經網路開始,介紹深度學習與其相似之處,並理解神經網路的學習步驟,同時也介紹一些必備的實作知識與工具,以具備基本的實作工程技能。
✪入門深度學習框架PyTorch
內容介紹語法簡潔、好上手且在學術界流行的PyTorch框架,著重實作與應用。
✪深度學習×自然語言處理×電腦視覺×強化學習
內容會依序談到深度學習在三方面的應用,如自然語言處理(Natural Language Processing,NLP )、電腦視覺(Computer Vision,CV )、強化學習(Reinforcement Learning,RL )。除了基本簡介外,還會介紹一些基本實作和改變世界的技術成果。
【適用讀者】
✪對深度學習有興趣,但還不知道它是什麼、能做什麼的新手。
✪零散讀過深度學習相關文章,但仍有知識缺口的入門者。
✪被教科書中龐大的數學理論嚇到,而對深度學習卻步的讀者。
✪正在上學校的深度學習課程,但不知道實作從何開始的學生。
作者簡介:
【作者簡介】
廖珮妤
現任美國Twitter軟體工程師。曾任史丹佛大學CS224n課程助教、PyLadies社群電子報作者、北一女資訊研習社學術長,樂於以各種方式分享技術。超級費迷,喜歡的歌手是張雨生。
2020年畢業後,決定將學生時期所學的深度學習知識與專案統整成「Knock Knock! Deep Learning」系列文,並於iT邦幫忙鐵人賽AI & Data組獲得冠軍。
【內文插畫繪者簡介】
張巧心
國立臺灣大學生物機電工程學系畢。作者的高中麻吉。興趣是隨手塗鴉,用畫筆記錄生活。
電子書閱讀方式
您所購買的電子書,系統將自動儲存於「我的電子書櫃」,您可透過PC(Windows / Mac)、行動裝置(手機、平板),輕鬆閱讀。
注意事項:
使用讀冊生活電子書服務即為同意讀冊生活電子書服務條款。
下單後電子書可開啟閱讀的時間請參考:不同的付款方式,何時可開啟及閱讀電子書?
因版權保護,您在TAAZE所購買的電子書/雜誌僅能以TAAZE專屬的閱讀軟體開啟閱讀,無法以其他閱讀器或直接下載檔案。
退換貨說明:電子書、電子雜誌商品,恕不提供10天猶豫期退貨,若您對電子書閱讀有疑慮,建議您可於購買前先行試讀。並於訂購本商品前請務必詳閱電子書商品退換貨原則。
作者:廖珮妤
優惠價: 75 折, NT$ 420 NT$ 560
【本書特色】
最貼近新手的深度學習理論及應用全方位入門書!
✪學習必備理論,打好基礎,新手不怕被過多的數學式嚇跑。
✪使用PyTorch直覺易懂且強大的深度學習框架,開始應用的第一步。
✪了解自然語言處理、電腦視覺與強化學習等三大領域經典應用與實作,領略深度學習的強大。
✪兼顧理論與實作,而非偏頗一方,培養讀者較全面的理解。
✪包含經典學術論文與知名專案技術講解,幫助讀者掌握此技術所能到達的高度。
✪每章末提供自我檢驗題目,幫助理解與統整各章概念。
【內容簡介】
本書內容改編自第12屆iT邦幫忙鐵人賽AI & Data組冠軍系列文章《Knock Knock!Deep Learning》,是專為深度學習初學者所規劃的內容,旨在以淺顯易懂的文字,帶領深度學習領域的新手度過入門撞牆期。內容從深度學習的基本理論開始,並以PyTorch框架的介紹過渡至應用篇,最後以自然語言處理、電腦視覺與強化學習等三大領域的經典論文與實作專案收尾,循序漸進且去蕪存菁。本書會帶入許多故事性的敘述和插圖,結合作者自身在史丹佛大學修讀碩士期間的學習心得,以及深度學習發展相關的故事,期使本書讀起來不會如教科書一樣厚重,亦不會像網路上的技術文章一般零散無脈絡,讓讀者對深度學習領域的發展有一定的概念。
【內容重點】
✪了解深度學習的基礎理論以及必備的實作知識與工具
內容從人類的神經網路開始,介紹深度學習與其相似之處,並理解神經網路的學習步驟,同時也介紹一些必備的實作知識與工具,以具備基本的實作工程技能。
✪入門深度學習框架PyTorch
內容介紹語法簡潔、好上手且在學術界流行的PyTorch框架,著重實作與應用。
✪深度學習×自然語言處理×電腦視覺×強化學習
內容會依序談到深度學習在三方面的應用,如自然語言處理(Natural Language Processing,NLP )、電腦視覺(Computer Vision,CV )、強化學習(Reinforcement Learning,RL )。除了基本簡介外,還會介紹一些基本實作和改變世界的技術成果。
【適用讀者】
✪對深度學習有興趣,但還不知道它是什麼、能做什麼的新手。
✪零散讀過深度學習相關文章,但仍有知識缺口的入門者。
✪被教科書中龐大的數學理論嚇到,而對深度學習卻步的讀者。
✪正在上學校的深度學習課程,但不知道實作從何開始的學生。
作者簡介:
【作者簡介】
廖珮妤
現任美國Twitter軟體工程師。曾任史丹佛大學CS224n課程助教、PyLadies社群電子報作者、北一女資訊研習社學術長,樂於以各種方式分享技術。超級費迷,喜歡的歌手是張雨生。
2020年畢業後,決定將學生時期所學的深度學習知識與專案統整成「Knock Knock! Deep Learning」系列文,並於iT邦幫忙鐵人賽AI & Data組獲得冠軍。
【內文插畫繪者簡介】
張巧心
國立臺灣大學生物機電工程學系畢。作者的高中麻吉。興趣是隨手塗鴉,用畫筆記錄生活。
電子書閱讀方式
您所購買的電子書,系統將自動儲存於「我的電子書櫃」,您可透過PC(Windows / Mac)、行動裝置(手機、平板),輕鬆閱讀。
注意事項:
使用讀冊生活電子書服務即為同意讀冊生活電子書服務條款。
下單後電子書可開啟閱讀的時間請參考:不同的付款方式,何時可開啟及閱讀電子書?
因版權保護,您在TAAZE所購買的電子書/雜誌僅能以TAAZE專屬的閱讀軟體開啟閱讀,無法以其他閱讀器或直接下載檔案。
退換貨說明:電子書、電子雜誌商品,恕不提供10天猶豫期退貨,若您對電子書閱讀有疑慮,建議您可於購買前先行試讀。並於訂購本商品前請務必詳閱電子書商品退換貨原則。
※ 二手徵求後,有綁定line通知的讀者,
該二手書結帳減5元。(減5元可累加)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode
|
||||||||||||||||||
|
||||||||||||||||||
|