作者:張國男
定價:NT$ 800
優惠價:88 折,NT$ 704
已售完,補貨中
這是一本非常特別的著作。作者張國男教授也是一個非常特別的數學家。對魔方陣的研究,張國男稱得上世界頂尖(他的同班同學黃敏晃教授說,張國男可能是世界第一)。
本書是屬於排列組合學(combinatorics),那是秀異的數學家展露靈巧的場所。有人這樣定義組合學:「 這一門數學,是唯一有可能使得一個數學老師輸給她(他)的學生的數學。」它在中學數學課程中,份量不多,而且還可以說,越來越少。可是,對於數學資優生,組合學的份量其實是越來越重(外行人聽起來覺得很矛盾)。事實上,在一切的數學競賽中,組合學大概是絕不會缺席的題目(我的估計是:五題中最少有一題),可以與之相提並論的只有整數論(numbertheory),因此之故,一切的數學競賽的講習班中,組合學的教材,大概要佔了三分之一。
基本上,學習組合數學都是從題目中一題一題地學,或即是說,從題目中一題一題地教!但是非常難找一本有適當題目的書,因為敘述必須簡單,但是又要很容易「形成幾何的形象」,才可以引導學習者去思考問題中的對稱性。就這一點來說,這本書是非常的成功。
全書共計七個單元,共有四十篇專文,另有二附錄。在七個單元中,各篇架構皆分為五個部分:
‧「問題」:闡述待解之形體配號問題
‧「解答」:揭示完整之解答,以供讀者參考;
‧「備註」:於備註中介紹與上述問題相當(等價、同義)之問題,或補充說明與前揭解答有關之若干事項;
‧「習題」:設計適當之習題,留予普通讀者實際演練;
‧「研究」:研究部分所提出之難題,則多為「窮畢生之力﹐亦無法完全解決者」,數學功力高強之人士,可大展身手。
在四十篇中,附有完整解答之問題逾五十則,供普通讀者實際演練之習題近七百則,而富高難度、具挑戰性、待研究之問題,則不止三百則也。
作者簡介:
張國男
臺大數學系教授,退休後專事寫作,著有《抽象代數導引》、《高等資優數學問題研究與發掘》等。因興趣使然,多次投寄試題至「亞太數學奧林匹亞」及「國際數學奧林匹亞」競賽單位,並獲推薦。於2010年辭世。
名人推薦:
本書導讀──文/ 臺灣大學數學系名譽教授楊維哲
這是一本非常特別的著作。(作者也是一個非常特別的數學家) 本人看到這本書的時候,腦中馬上聯想到一年以前才仔細看的一本名著Japanese Temple Geometry Problems,所以我先略略描述後者。那本名著的作者有兩人,一是深川英俊,專業的數學史研究學者,另一人卻是大大有名的(英國)幾何學家Dan Pedoe(他與Hodge 合寫了經典名著《代數幾何的方法》)Pedoe 會對日本數學("和算")感到興趣,是因為他看到其中的一個題目。這個題目根本就是F.Soddy 的The Hexlet(六球連鎖問題)。英國化學家Soddy 爵士(1877-1956)是諾貝爾獎得主,他在1936 年(於Nature 雜誌上)發表了這個數學題,造成當時的轟動。但是這樣的題目卻出現於1822 年的神奈川的一匾算額中。當時的和算家沒有「逆轉」(inversion)這樣子的現代工具,居然能夠解決這一類的問題,讓Pedoe 大為贊嘆。我會翻閱那本書是因為要寫一些給中學資優生閱讀的幾何。另外,我也正在思考數學競賽的命題. 事實上, 那本書給了我很大很大的幫助! 關於前者, 我就選了10 題, 改寫在給中學資優生的)基礎座標幾何中(當然有說明出處)關於後者,我已經思考過好幾道可以加以變化衍伸,成為競試題的題目。(雖然我今年沒有採用, 但是明年就用得上了。)
回到張國男教授的這本書來。我的聯想就是有三類讀者群: 老師, 資優生, 數學愛好者.這本書,在數學領域中,是屬於排列組合學(combinatorics),那是秀異的數學家展露靈巧的場所。組合學有人這樣子定義:「這一門數學, 是唯一有可能使得一個數學老師輸給她他的學生的數學」。它在中學數學課程中, 份量不多, 而且還可以說:越來越少。可是,對於數學資優生,組合學的份量其實是越來越重(外行人聽起來覺得很矛盾)。事實上,在一切的數學競賽中,組合學大概是絕不會缺席的題目。(我的估計是:五題中最少有一題)可以與之相提並論的只有整數論(number theory)。因此之故,一切的數學競賽的講習班中,組合學的教材,大概要佔了三分之一。組合數學,一言以概括之,是笨拙與靈巧之結合。笨拙是因為必須不耐煩地逐項(case by case)討論,靈巧是因為必須充分地利用對稱性。
不論是從教學或者學習的角度來看,組合數學的難處是:定理不太多!基本上,學習組合數學都是從題目中一題一題地學,或即是說,從題目中一題一題地教!但是非常難找一本有適當題目的書,因為敘述必須簡單,但是又要很容易「形成幾何的形象」,才可以引導學習者去思考問題中的對稱性,就這一點來說,這本書是非常的成功。
我覺得對於各種不同程度的學生,指導的老師,都可以在這本書中,選擇幾道題目,當作講授的教材。對於數學知識不豐富而數學志趣昂揚的資優生,根本可以拿這本書獨立學習。看完一題詳盡的解說之後,就可以進攻附帶的習題。(本書的順序是自然的由淺入深,不過對於大學三年級以上的學生,順序就可以很自由了!)
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。最多人成交
平均成交價14折110元
最近成交價(折扣)
徵求價 | 數量 |
2折 | 2 |
3折 | 1 |
影片僅供參考,實物可能因再版或再刷而有差異
作者:張國男
優惠價: 88 折, NT$ 704 NT$ 800
已售完,補貨中
這是一本非常特別的著作。作者張國男教授也是一個非常特別的數學家。對魔方陣的研究,張國男稱得上世界頂尖(他的同班同學黃敏晃教授說,張國男可能是世界第一)。
本書是屬於排列組合學(combinatorics),那是秀異的數學家展露靈巧的場所。有人這樣定義組合學:「 這一門數學,是唯一有可能使得一個數學老師輸給她(他)的學生的數學。」它在中學數學課程中,份量不多,而且還可以說,越來越少。可是,對於數學資優生,組合學的份量其實是越來越重(外行人聽起來覺得很矛盾)。事實上,在一切的數學競賽中,組合學大概是絕不會缺席的題目(我的估計是:五題中最少有一題),可以與之相提並論的只有整數論(numbertheory),因此之故,一切的數學競賽的講習班中,組合學的教材,大概要佔了三分之一。
基本上,學習組合數學都是從題目中一題一題地學,或即是說,從題目中一題一題地教!但是非常難找一本有適當題目的書,因為敘述必須簡單,但是又要很容易「形成幾何的形象」,才可以引導學習者去思考問題中的對稱性。就這一點來說,這本書是非常的成功。
全書共計七個單元,共有四十篇專文,另有二附錄。在七個單元中,各篇架構皆分為五個部分:
‧「問題」:闡述待解之形體配號問題
‧「解答」:揭示完整之解答,以供讀者參考;
‧「備註」:於備註中介紹與上述問題相當(等價、同義)之問題,或補充說明與前揭解答有關之若干事項;
‧「習題」:設計適當之習題,留予普通讀者實際演練;
‧「研究」:研究部分所提出之難題,則多為「窮畢生之力﹐亦無法完全解決者」,數學功力高強之人士,可大展身手。
在四十篇中,附有完整解答之問題逾五十則,供普通讀者實際演練之習題近七百則,而富高難度、具挑戰性、待研究之問題,則不止三百則也。
作者簡介:
張國男
臺大數學系教授,退休後專事寫作,著有《抽象代數導引》、《高等資優數學問題研究與發掘》等。因興趣使然,多次投寄試題至「亞太數學奧林匹亞」及「國際數學奧林匹亞」競賽單位,並獲推薦。於2010年辭世。
名人推薦:
本書導讀──文/ 臺灣大學數學系名譽教授楊維哲
這是一本非常特別的著作。(作者也是一個非常特別的數學家) 本人看到這本書的時候,腦中馬上聯想到一年以前才仔細看的一本名著Japanese Temple Geometry Problems,所以我先略略描述後者。那本名著的作者有兩人,一是深川英俊,專業的數學史研究學者,另一人卻是大大有名的(英國)幾何學家Dan Pedoe(他與Hodge 合寫了經典名著《代數幾何的方法》)Pedoe 會對日本數學("和算")感到興趣,是因為他看到其中的一個題目。這個題目根本就是F.Soddy 的The Hexlet(六球連鎖問題)。英國化學家Soddy 爵士(1877-1956)是諾貝爾獎得主,他在1936 年(於Nature 雜誌上)發表了這個數學題,造成當時的轟動。但是這樣的題目卻出現於1822 年的神奈川的一匾算額中。當時的和算家沒有「逆轉」(inversion)這樣子的現代工具,居然能夠解決這一類的問題,讓Pedoe 大為贊嘆。我會翻閱那本書是因為要寫一些給中學資優生閱讀的幾何。另外,我也正在思考數學競賽的命題. 事實上, 那本書給了我很大很大的幫助! 關於前者, 我就選了10 題, 改寫在給中學資優生的)基礎座標幾何中(當然有說明出處)關於後者,我已經思考過好幾道可以加以變化衍伸,成為競試題的題目。(雖然我今年沒有採用, 但是明年就用得上了。)
回到張國男教授的這本書來。我的聯想就是有三類讀者群: 老師, 資優生, 數學愛好者.這本書,在數學領域中,是屬於排列組合學(combinatorics),那是秀異的數學家展露靈巧的場所。組合學有人這樣子定義:「這一門數學, 是唯一有可能使得一個數學老師輸給她他的學生的數學」。它在中學數學課程中, 份量不多, 而且還可以說:越來越少。可是,對於數學資優生,組合學的份量其實是越來越重(外行人聽起來覺得很矛盾)。事實上,在一切的數學競賽中,組合學大概是絕不會缺席的題目。(我的估計是:五題中最少有一題)可以與之相提並論的只有整數論(number theory)。因此之故,一切的數學競賽的講習班中,組合學的教材,大概要佔了三分之一。組合數學,一言以概括之,是笨拙與靈巧之結合。笨拙是因為必須不耐煩地逐項(case by case)討論,靈巧是因為必須充分地利用對稱性。
不論是從教學或者學習的角度來看,組合數學的難處是:定理不太多!基本上,學習組合數學都是從題目中一題一題地學,或即是說,從題目中一題一題地教!但是非常難找一本有適當題目的書,因為敘述必須簡單,但是又要很容易「形成幾何的形象」,才可以引導學習者去思考問題中的對稱性,就這一點來說,這本書是非常的成功。
我覺得對於各種不同程度的學生,指導的老師,都可以在這本書中,選擇幾道題目,當作講授的教材。對於數學知識不豐富而數學志趣昂揚的資優生,根本可以拿這本書獨立學習。看完一題詳盡的解說之後,就可以進攻附帶的習題。(本書的順序是自然的由淺入深,不過對於大學三年級以上的學生,順序就可以很自由了!)
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
2折 | 2 |
3折 | 1 |
最多人成交
平均成交價14折110元
最近成交價(折扣)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode