第1章|什麼都不懂的鏡子
1.1 魔鏡與皇后
1.2 試著機械學習
Column 機械學習是什麼?
1.3 根據資料學習
Column 機械的自主學習
第2章|美麗的祕訣
2.1 魔鏡的答案
Column 數學的必要性
2.2 挑戰迴歸問題
Column 機械也跟人類一樣?
2.3 代表美麗的函數
Column 機械也有老師
第3章|挑戰最佳化問題
3.1 皇后全力衝刺!
Column 從演算法多學一點
3.2 模型的極限
Column 訓練資料與測試資料
3.3 建立新的特徵值
Column 如何建立困難的函數?
3.4 神經網路
Column 大腦的資訊處理機構
第4章|挑戰深度學習
4.1 推桿推不動了?
Column 深度學習的風潮
4.2 注意過擬合
Column 機械學習就是與過擬合戰鬥
4.3 批次學習與在線學習
Column 隨機梯度下降法的復活
第5章|預測未來
5.1 識別的鏡子
5.2 尋找分界線
Column 支持向量機的泛化能力
5.3 原本就能分離嗎?
Column 扭曲空間的核心函數
5.4 填補資料的缺漏
Column 資料的本質
5.5 掌握資料的本質
Column 稀疏性與人類的直覺
第6章|映出美麗的鏡子
6.1 珍貴的圖片資料
Column 利用磁鐵進行機械學習?
6.2 玻爾茲曼機械學習的影像處理
Column 機械學習與統計力學
6.3 能辨識更複雜的特徵嗎?
Column 變分原理
6.4 使用隱藏變數,打造多元世界
Column 採樣專用機器登場
6.5 複雜資料的真面目
Column 辛頓先生的意志力
第7章|只找出臉部的美麗度
7.1 知道世上所有事情的魔鏡
7.2 魔鏡啊魔鏡、魔鏡先生