內容簡介:「本書全面介紹深度電腦視覺的最先進作法,在Keras中建構端到端生產系統,提供經過實戰檢驗的最佳實務解決方案。」
—François Chollet
深度學習研究者和Keras創造者
這本實用指南向您展示了如何使用機器學習模型從影像中淬取資訊。ML工程師和資料科學家將會學習經過驗證的ML技術來解決各種影像問題,包括分類、物件偵測、自編碼器、影像產生、計數和圖說產生。本書卓越的介紹了端到端深度學習:資料集建立、資料前置處理、模型設計、模型訓練、評估、部署和可解釋性。
Google工程師Valliappa Lakshmanan、Martin Görner和Ryan Gillard向您展示了如何開發準確且可解釋的電腦視覺ML模型,並使用強大的ML架構以靈活且可維護的方式將它們投入大規模生產。您將學習如何使用以TensorFlow和Keras編寫的模型進行設計、訓練、評估和預測。
您將學習如何:
‧為電腦視覺任務設計機器學習架構
‧選擇適合您的任務的模型(例如ResNet、SqueezeNet或EfficientNet)
‧建立端到端ML生產線來訓練、評估、部署和解釋您的模型
‧前置處理影像以進行資料擴增進行並支援可學習性
‧納入可解釋性和負責任的AI的最佳實務
‧將影像模型部署為Web服務或在邊緣設備上
‧監控和管理機器學習模型
目錄
章節說明:前言
第1章 電腦視覺之機器學習
第2章 視覺機器學習模型
第3章 影像視覺
第4章 物件偵測與影像分割
第5章 建立視覺資料集
第6章 前置處理
第7章 訓練生產線
第8章 模型品質和持續評估
第9章 模型預測
第10章 生產 ML 的趨勢
第11章 進階視覺問題
第12章 影像和文本產生
後記
索引
章節說明:前言
第1章 電腦視覺之機器學習
第2章 視覺機器學習模型
第3章 影像視覺
第4章 物件偵測與影像分割
第5章 建立視覺資料集
第6章 前置處理
第7章 訓練生產線
第8章 模型品質和持續評估
第9章 模型預測
第10章 生產 ML 的趨勢
第11章 進階視覺問題
第12章 影像和文本產生
後記
索引
購物須知
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。