郝旭烈楊定一台灣美術52種走路方式哥吉拉楊双子讀冊選讀川普2.0季暢銷5折起人生貓教練楊麗花黃仁勳手機成癮小開學python東立全書系
暫存清單
放入購物車
立即結帳

AI+IoT佈建邊緣運算:電腦視覺業界專案原理及實作

深入理解计算机视觉:在边缘端构建高效的目标检测应用

作者:張晨然

評價
1收藏
我要賣
行銷分紅
分享

優惠價: 9 NT$ 882 NT$ 980

運送方式:超商取貨、宅配取貨

銷售地區:全球

訂購後,立即為您進貨

圖書館借閱
二手書交易資訊
商品資料
內容簡介

※本書結構

本書共5篇,第1篇、第2篇重點介紹以YOLO為代表的一階段物件辨識神經網路;第3篇、第4篇重點介紹物件辨識神經網路在雲端和邊緣端的部署,其中對邊緣端的量化原理進行了重點介紹;第5篇重點介紹當前較為流行的自動駕駛的資料計算原理和物件辨識。本書實用性非常強,既適合對電腦視覺具有一定了解的高等院校大學生、所究所學生及具有轉型意願的軟體工程師入門學習,又適合電腦視覺工程項目研發和營運人員參考閱讀。

第1篇,以知名電腦視覺競賽任務為例,旨在介紹物件辨識應用場景下的基本概念和約定,以及資料標注工具和格式,讓讀者具備特徵融合網路、預測網路的設計能力。對於資料後處理技術則介紹了解碼網路、資料重網路拓樸路、NMS演算法等後處理演算法,在此基礎上結合各式各樣的骨幹網路,讀者就可以架設完整的一階段物件辨識神經網路模型了。

第2篇,旨在介紹物件辨識神經網路的訓練全流程。本篇從資料集製作到損失函式設計,從訓練資料監控到NaN或INF異常處理,特別是對不同損失函式的設計,進行了非常詳細的原理性闡述。相比神經網路設計,損失函式的設計是最具有可解釋性的,也是電腦視覺研究中比較容易出成果的研究方向。

第3篇,旨在運用物件辨識神經網路的訓練成果,架設完整的物件辨識推理模型。推理模型支援雲端部署和邊緣端部署。對於雲端部署,以主流的亞馬遜雲端為例介紹;對於邊緣端部署,以GoogleCoral開發板為例,介紹神經網路量化模型的基礎原理和模型編譯邏輯。

第4篇,結合作者主導過的智慧交通、智慧後勤等專案,旨在介紹實際電腦視覺資料增強技術,以及神經網路性能評估的原理和具體應用。本篇還結合應用同樣廣泛的算能科技(比特中國)SE5邊緣計算閘道和瑞芯微RK3588邊緣計算系統,介紹實際專案中如何使用邊緣計算硬體加速人工智慧的產業化應用。根據邊緣計算硬體特性對神經網路進行針對性修改,是真正考驗一個開發者對神經網路理解程度的試金石。跟隨本書介紹熟練掌握2~3款邊緣計算硬體,就能更快速地將電腦視覺應用到實際生產中,在具體應用中創造價值。

第5篇,旨在將讀者引入三維電腦視覺中最重要的應用領域之一:自動駕駛。圍繞KITTI資料集,本篇介紹了自動駕駛資料的計算原理,並重點介紹了PointNet++等多個三維物件辨識神經網路。

附錄列表說明了本書所參考的物件辨識原始程式碼、Python運行環境架設,以及TensorFlow的基本操作。對基本操作有疑問的讀者,可以根據附錄中的說明登入相關網站進行查閱和提問。

作者簡介:

張晨然
作者大學畢業於天津大學通訊工程專業,碩士研究所學生階段就讀於廈門大學,主攻嵌入式系統和數位訊號底層演算法,具備紮實的理論基礎。

作者先後就職於中國電信集團公司和福建省電子資訊(集團)有限責任公司,目前擔任福建省人工智慧學會的理事和企業工作委員會的主任,同時也擔任Google開發者社區、亞馬遜開發者生態的福州區域負責人,長期從事電腦視覺和自然語言基礎技術的研究,累積了豐富的人工智慧專案經驗,致力於推動深度學習在交通、工業、民生、建築等領域的應用落地。作者於2017年獲得高級工程師職稱,擁有多項發明專利。

本書作者GitHub帳號是fjzhangcr。

作者序
目錄
購物須知
發表評論
歡迎你給予星評或評論
近期最多人購買
TAAZE | facebook 動態分享
同步facebook帳號,將您的冊格子收藏分享給facebook上的好友們!了解更多
不,我不想同步
facebook帳號同步