★NLP始祖N-Gram,Bag-of-Words詳細說明介紹實作
☆進入神經網路時代的Word2Vec、NPLM、RNN詳解及實作
★序列至序列的神器Seq2Seq詳解及實作
☆抓住字與字之間的關鍵Attention Mechanism詳解及實作
★成為大神的Transformer詳解及實作
☆第一個通用語言模型BERT詳解及實作
★生成式語言模型GPT詳解及實作
☆ChatGPT應用詳解及實作
★最新一代GPT-4詳解及實作
全書從最基本的N-Gram 和簡單文字表示Bag-of-Words開始說明NLP的應用,接著進入NLP領域中最重要的隱空間表示法Word2Vec,正式進入了多維向量Embedding表示語義的年代。之後接連介紹了神經網路表示法RNN,以及將encoder及decoder連接的Seq2seq。本書最大的特色就是花了很大的篇幅介紹了注意力機制,詳解了大家最想不通的QKV查詢。在了解了注意力機制之後,就進入最重要的成神Transformer階段,並且帶有說明及完整的實作。最重要的Transformer解決之後,接下來就是強大應用的展現,包括了NLU的BERT說明及實作,以及現今AI基本GPT(屬於NLG)的自迴歸模型。本書也實作了自己使用維基文字生成的GPT模型,讓讀者一探AI一路走來的技術堆疊。最後一章更把目前當紅的ChatGPT所使用的RHLF技術完整走一遍,也使用了OpenAI的API來完成實作。
作者簡介:
黃佳,筆名咖哥,新加坡科技研究局人工智慧研究員。主攻方向為NLP大模型的研發與應用、持續學習、AI in FinTech。黃佳深耕人工智慧領域多年,積累了豐富的科研專案和政府、銀行、能源、醫療等領域AI項目落地實戰經驗,目前正與PlatoX.AI展開富有前景的技術合作。曾著有《零基礎學機器學習》、《數據分析咖哥十話》等多部熱銷書。同時,在極客時間開設專欄《零基礎實戰機器學習》、《LangChain實戰課》,在深藍學院開設影片課程「生成式預訓練語言模型:理論與實戰」。
作者序
前言
寫作時,時間流淌得很快。不知不覺,月已上中天,窗外燈火闌珊。
仰望蒼穹,月色如水,宇宙浩瀚。每每想起人類已在月球上留下腳印,而今再度出發,就不由在心中感慨——如此有幸,能生活在這個時代。
其實,從來沒有任何一種技術的突破,未經歷過一次次失敗,就能直接「降臨」到人類的眼前。
人工智慧(Artificial Intelligence,AI)技術,從誕生至今,其發展並不是一帆風順的:盛夏與寒冬交錯,期望和失望交融。
自然語言處理(Natural Language Processing,NLP) 技術是如此。ChatGPT 和 GPT-4 亦是如此。
從 N - Gram 和 Bag-of-Words 開始,自然語言處理技術和模型在不斷發展和演進,逐漸引入了更強大的神經網路模型(如 RNN、Seq2Seq、Transformer等)。現代預訓練語言模型(如BERT 和 GPT)則進一步提高了 NLP 任務的處理性能,成為目前自然語言處理領域的主流方法。
這一本小書,希望從純技術的角度,為你整理生成式語言模型的發展脈絡,對從 N-Gram、詞袋模型(Bag-of-Words,BoW)、Word2Vec(Word to Vector,W2V)、神經機率語言模型(Neural Probabilistic Language Model,NPLM)、循環神經網路(Recurrent Neural Network,RNN)、Seq2Seq(Sequence-to-Sequence,S2S)、注意力機制(Attention Mechanism)、Transformer、BERT到GPT的技術一一進行解碼,厘清它們的傳承關係。
這些具體技術的傳承關係如下。
■N-Gram 和 Bag-of-Words :都是早期用於處理文字的方法,關注詞頻和局部詞序列。
■Word2Vec :實現了詞嵌入方法的突破,能從詞頻和局部詞序列中捕捉詞彙的語義資訊。
■NPLM :基於神經網路的語言模型,從此人類開始利用神經網路處理詞序列。
■RNN :具有更強大的長距離依賴關係捕捉能力的神經網路模型。
■Seq2Seq :基於 RNN 的編碼器 - 解碼器架構,將輸入序列映射到輸出序列,是 Transformer 架構的基礎。
■Attention Mechanism :使 Seq2Seq 模型在生成輸出時更關注輸入序列的特定部分。
■Transformer :摒棄了 RNN,提出全面基於自注意力的架構,實現高效平行計算。
■BERT :基於 Transformer 的雙向預訓練語言模型,具有強大的遷移學習能力。
■初代 GPT :基於 Transformer 的單向預訓練語言模型,採用生成式方法進行預訓練。
■ChatGPT :從 GPT-3 開始,透過任務設計和微調策略的最佳化,尤其是基於人類回饋的強化學習,實現強大的文字生成和對話能力。
■GPT-4:仍基於 Transformer 架構,使用前所未有的大規模計算參數和資料進行訓練,展現出比以前的 AI 模型更普遍的智慧,不僅精通語言處理,還可以解決涉及數學、編碼、視覺、醫學、法律、心理學等各領域的難題,被譽為 「通用人工智慧的星星之火」(Sparks of Artificial General Intelligence)。
今天,在我們為 ChatGPT、GPT-4 等大模型的神奇能力而驚歎的同時,讓我們對它們的底層邏輯與技術做一次嚴肅而快樂的探索。對我來說,這也是一次朝聖之旅,一次重溫人工智慧和自然語言處理技術 70 年間艱辛發展的旅程。
因此,我為一個輕鬆的序章取了一個略微沉重的標題:看似尋常最崎崛,成如容易卻艱辛。
格物致知,叩問蒼穹,直面失敗,勇猛前行。
向偉大的、不斷探索未知領域的科學家們致敬!
黃佳
2023 年春末夏初月夜
前言
寫作時,時間流淌得很快。不知不覺,月已上中天,窗外燈火闌珊。
仰望蒼穹,月色如水,宇宙浩瀚。每每想起人類已在月球上留下腳印,而今再度出發,就不由在心中感慨——如此有幸,能生活在這個時代。
其實,從來沒有任何一種技術的突破,未經歷過一次次失敗,就能直接「降臨」到人類的眼前。
人工智慧(Artificial Intelligence,AI)技術,從誕生至今,其發展並不是一帆風順的:盛夏與寒冬交錯,期望和失望交融。
自然語言處理(Natural Language Processing,NLP) 技術是如此。ChatGPT 和 GPT-4 亦是如此。
從 N - Gram 和 ...
目錄
序章 看似尋常最崎崛,成如容易卻艱辛
GPT-4:點亮通用人工智慧的火花
人工智慧演進之路:神經網路兩落三起
現代自然語言處理:從規則到統計
何為語言?資訊又如何傳播?
NLP 是人類和電腦溝通的橋樑
NLP 技術的演進史
大規模預訓練語言模型:BERT 與GPT 爭鋒
語言模型的誕生和進化
統計語言模型的發展歷程
基於Transformer 架構的預訓練模型
" 預訓練+ 微調大模型" 的模式
以提示/ 指令模式直接使用大模型
從初代GPT 到ChatGPT,再到GPT-4
GPT 作為生成式模型的天然優勢
ChatGPT 背後的推手——OpenAI
從初代GPT 到ChatGPT,再到GPT-4 的進化史
第 1 課 高樓萬丈平地起:語言模型的雛形 N-Gram 和簡單文字表示 Bag-of-Words
1.1 N-Gram 模型
1.2 " 詞" 是什麼,如何" 分詞"
1.3 建立一個Bigram 字元預測模型
1.4 詞袋模型
1.5 用詞袋模型計算文字相似度
小結
思考
第 2 課 問君文字何所似:詞的向量表示 Word2Vec 和 Embedding
2.1 詞向量 ≈ 詞嵌入
2.2 Word2Vec:CBOW 模型和Skip-Gram 模型
2.3 Skip-Gram 模型的程式實現
2.4 CBOW 模型的程式實現
2.5 透過nn.Embedding 來實現詞嵌入
小結
思考
第 3 課 山重水盡疑無路:神經機率語言模型和循環神經網路
3.1 NPLM 的起源
3.2 NPLM 的實現
3.3 循環神經網路的結構
3.4 循環神經網路實戰
小結
思考
第 4 課 柳暗花明又一村:Seq2Seq 編碼器 - 解碼器架構
4.1 Seq2Seq 架構
4.2 建構簡單Seq2Seq 架構
小結
第 5 課 見微知著開慧眼:引入注意力機制
5.1 點積注意力
5.2 縮放點積注意力
5.3 編碼器- 解碼器注意力
5.4 注意力機制中的 Q、K、V
5.5 自注意力
5.6 多頭自注意力
5.7 注意力遮罩
5.8 其他類型的注意力
小結
思考
第 6 課 層巒疊翠上青天:架設 GPT 核心元件 Transformer
6.1 Transformer 架構剖析
6.1.1 編碼器- 解碼器架構
6.1.2 各種注意力的應用
6.1.3 編碼器的輸入和位置編碼
6.1.4 編碼器的內部結構
6.1.5 編碼器的輸出和編碼器- 解碼器的連接
6.1.6 解碼器的輸入和位置編碼
6.1.7 解碼器的內部結構
6.1.8 解碼器的輸出和Transformer 的輸出頭
6.2 Transformer 程式實現
6.3 完成翻譯任務
6.3.1 資料準備
6.3.2 訓練Transformer 模型
6.3.3 測試Transformer 模型
小結
思考
第 7 課 芳林新葉催陳葉:訓練出你的簡版生成式 GPT
7.1 BERT 與GPT 爭鋒
7.2 GPT:生成式自回歸模型
7.3 建構GPT 模型並完成文字生成任務
7.3.1 架設GPT 模型(解碼器)
7.3.2 建構文字生成任務的資料集
7.3.3 訓練過程中的自回歸
7.3.4 文字生成中的自回歸(貪婪搜索)
7.4 使用WikiText2 資料集訓練Wiki-GPT 模型
7.4.1 用WikiText2 建構Dataset 和DataLoader
7.4.2 用DataLoader 提供的資料進行訓練
7.4.3 用Evaluation Dataset 評估訓練過程
小結
思考
第 8 課 流水後波推前波:ChatGPT 基於人類回饋的強化學習
8.1 從GPT 到ChatGPT
8.2 在Wiki-GPT 基礎上訓練自己的簡版ChatGPT
8.3 用Hugging Face 預訓練GPT 微調ChatGPT
8.4 ChatGPT 的RLHF 實戰
8.4.1 強化學習基礎知識
8.4.2 簡單RLHF 實戰
小結
思考
第 9 課 生生不息的循環:使用強大的 GPT-4 API
9.1 強大的OpenAI API
9.2 使用GPT-4 API
小結
思考
後記 莫等閒,白了少年頭
序章 看似尋常最崎崛,成如容易卻艱辛
GPT-4:點亮通用人工智慧的火花
人工智慧演進之路:神經網路兩落三起
現代自然語言處理:從規則到統計
何為語言?資訊又如何傳播?
NLP 是人類和電腦溝通的橋樑
NLP 技術的演進史
大規模預訓練語言模型:BERT 與GPT 爭鋒
語言模型的誕生和進化
統計語言模型的發展歷程
基於Transformer 架構的預訓練模型
" 預訓練+ 微調大模型" 的模式
以提示/ 指令模式直接使用大模型
從初代GPT 到ChatGPT,再到GPT-4
GPT 作為生成式模型的天然優勢
ChatGPT 背後的推手——OpenAI
從初代GPT 到ChatG...
購物須知
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。