內容簡介:使用基本的線性代數、機率和統計來掌控您的資料
「在當前資料科學教育環境的嘈雜聲中,這本書脫穎而出,包含許多清晰、實用的範例,說明理解和建構資料所需的基礎知識。」
—Vicki Boykis
Tumblr高級機器學習工程師
讓您掌握在資料科學、機器學習和統計學等方面所需具備的數學知識。作者Thomas Nield將引導您了解微積分、機率、線性代數和統計等領域,以及它們是如何應用在線性迴歸、邏輯迴歸和神經網路等技術。
在此過程中,您還將獲得對資料科學的實用見解,以及如何利用這些見解幫助提升您的職業生涯。
您將了解如何:
‧使用Python程式碼和SymPy、NumPy和scikit-learn等程式庫來探索基本的數學概念,例如微積分、線性代數、統計和機器學習
‧用簡單的語言並使用最少的數學符號和行話來理解線性迴歸、邏輯迴歸和神經網路等技術
‧對資料集執行描述性統計和假說檢定,以解釋p值和統計顯著性
‧操作向量和矩陣並執行矩陣分解
‧對微積分、機率、統計和線性代數的知識進行整合和建構,並應用於包括神經網路在內的迴歸模型
‧在資料科學職業生涯中進行實際導航,避免常見的陷阱、假設和偏見,同時調整您的技能以在就業市場中脫穎而出
目錄
章節說明:第1章 基本數學和微積分複習
第2章 機率
第3章 描述性和推論性統計
第4章 線性代數
第5章 線性迴歸
第6章 邏輯迴歸和分類
第7章 神經網路
第8章 職涯建議和前進的道路
附錄A 補充主題
附錄B 習題解答
章節說明:第1章 基本數學和微積分複習
第2章 機率
第3章 描述性和推論性統計
第4章 線性代數
第5章 線性迴歸
第6章 邏輯迴歸和分類
第7章 神經網路
第8章 職涯建議和前進的道路
附錄A 補充主題
附錄B 習題解答
購物須知
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱
退換貨原則、
二手CD、DVD退換貨說明。