《初等數論及其應用(英文版)(第6版)》是數論課程的經典教材,自出版以來,深受讀者好評,被美國加州大學伯克利分校、伊利諾伊大學、得克薩斯大學等數百所名校採用。
《初等數論及其應用(英文版)(第6版)》以經典理論與現代應用相結合的方式介紹了初等數論的基本概念和方法,內容包括整除、同餘、二次剩餘、原根以及整數的階的討論和計算。
作者簡介:
Kenneth H.Rosen,1972年獲密歇根大學數學學士學位,1976年獲麻省理工學院數學博士學位,1982年加入貝爾實驗室,現為AT & T實驗室特別成員,國際知名的計算機數學專家。Rosen博士對數論領域與數學建模領域頗有研究,並寫過很多經典論文及專著。他的經典著作《離散數學及其應用》的中文版和影印版均已由機械工業出版社引進出版。
目錄
Preface
List of Symbols
What Is Number Theory?
1 The Integers
1.1 Numbers and Sequences
1.2 Sums and Products
1.3 Mathematical Induction
1.4 The Fibonacci Numbers
1.5 Divisibility
2 Integer Representations and Operations
2.1 Representations of Integers
2.2 Computer Operations with Integers
2.3 Complexity of Integer Operations
3 Primes and Greatest Common Divisors
3.1 Prime Numbers
3.2 The Distribution of Primes
3.3 Greatest Common Divisors and their Properties
3.4 The Euclidean Algorithm
3.5 The Fundamental Theorem of Arithmetic
3.6 Factorization Methods and the Fermat Numbers
3.7 Linear Diophantine Equations
4 Congruences
4.1 Introduction to Congruences
4.2 Linear Congruences
4.3 The Chinese Remainder Theorem
4.4 Solving Polynomial Congruences
4.5 Systems of Linear Congruences
4.6 Factoring Using the Pollard Rho Method
5 Applications of Congruences
5.1 Divisibility Tests
5.2 The Perpetual Calendar
5.3 Round-Robin Tournaments
5.4 Hashing Functions
5.5 Check Dieits
6 Some Special Congruences
6.1 Wilson's Theorem and Fermat's Little Theorem
6.2 Pseudoprimes
6.3 Euler's Theorem
7 Multiplicative Functions
7.1 The Euler Phi-Function
7.2 The Sum and Number of Divisors
7.3 Perfect Numbers and Mersenne Primes
7.4 M6bius Inversion
7.5 Partitions
8 Cryptology
8.1 Character Ciphers
8.2 Block and Stream Ciphers
8.3 Exponentiation Ciphers
8.4 Public Key Cryptography
8.5 Knapsack Ciphers
8.6 Cryptographic Protocols and Applications
9 Primitive Roots
9.1 The Order of an Integer and Primitive Roots
9.2 Primitive Roots for Primes
9.3 The Existence of Primitive Roots
9.4 Discrete Logarithms and Index Arithmetic
9.5 Primality Tests Using Orders of Integers and Primitive Roots
9.6 Universal Exponents
10 Applications of Primitive Roots and the
Order of an Integer
10.1 Pseudorandom Numbers
10.2 The E1Gamal Cryptosystem
10.3 An Application to the Splicing of Telephone Cables
11 Quadratic Residues
11.1 Quadratic Residues and Nonresidues
11.2 The Law of Quadratic Reciprocity
11.3 The Jacobi Symbol
11.4 Euler Pseudoprimes
11.5 Zero-Knowledge Proofs
12 Decimal Fractions and Continued Fractions
12.1 Decimal Fractions
12.2 Finite Continued Fractions
12.3 Infinite Continued Fractions
12.4 Periodic Continued Fractions
12.5 Factoring Using Continued Fractions
13 Some Nonlinear Diophantine Equations
13.1 Pythagorean Triples
13.2 Fermat's Last Theorem
13.3 Sums of Squares
13.4 Pell's Equation
13.5 Congruent Numbers
14 The Gaussian Integers
14.1 Gaussian Integers and Gaussian Primes
14.2 Greatest Common Divisors and Unique Factorization
14.3 Gaussian Integers and Sums of Squares
Appendix A Axioms for the Set of Integers
Appendix B Binomial Coefficients
Appendix C Using Maple and Mathematica for Number Theory
C. 1 Using Maple for Number Theory
C.2 Using Mathematica for Number Theory
Appendix D Number Theory Web Links
Appendix E Tables
Answers to Odd-Numbered Exercises
Bibliography
Index of Biographies
Index
Photo Credits
Preface
List of Symbols
What Is Number Theory?
1 The Integers
1.1 Numbers and Sequences
1.2 Sums and Products
1.3 Mathematical Induction
1.4 The Fibonacci Numbers
1.5 Divisibility
2 Integer Representations and Operations
2.1 Representations of Integers
2.2 Computer Operations with Integers
2.3 Complexity of Integer Operations
3 Primes and Greatest Common Divisors
3.1 Prime Numbers
3.2 The Distribution of Primes
3.3 Greatest Common Divisors and their Properties
3.4 The Euclidean ...
購物須知
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。