作者:Sebastian Raschka、Vahid Mirjalili
定價:NT$ 520
優惠價:88 折,NT$ 458
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
Python機器學習第三版(下)
Python Machine Learning - Third Edition
第三版-最新修訂版,新增TensorFlow 2、GAN和強化學習等實用內容
使用Python的scikit-learn和TensorFlow 2融會貫通機器學習與深度學習
循序漸進、由淺入深,好評熱銷再進化!最新修訂的《Python機器學習第三版》是一本不容錯過的全方位指南,也是讀者在建立機器學習系統時的必備參考。有別於其他機器學習教科書,本書使用Python探求機器學習和深度學習的技術精髓,強調豐富實用的程式範例、條理分明的數學解釋,以及直覺友善的圖解說明,帶領讀者探索機器學習的眾多子領域,讓艱澀的概念栩栩如生。
許多讀者告訴我們,他們非常喜歡本書第二版的前12章,因為它們全面介紹了機器學習與Python的科學計算。為了確保這些內容的相關性,我們依據讀者回饋,回顧並修改了這些章節,以支援最新版本的NumPy、SciPy、pandas、matplotlib和scikit-learn,並規劃成本書的上冊。而TensorFlow 2.0更是深度學習領域最振奮人心的事件之一,所有與TensorFlow有關的章節(第13章到第16章,規劃成本書的下冊)都進行了大幅度修改。除了介紹Keras API與scikit-learn的最新功能之外,本書也探討自然語言處理(NLP)的子領域「情緒分析」,以及強化學習(RL)和生成對抗網路(GAN)等時下最流行的AI技術(第17章和第18章)。
無論你是有經驗的程式設計師,或是機器學習新手,或你只想進一步深入了解機器學習的最新發展,本書將是你在機器學習之旅中的絕佳良伴。
在這本書中,你將學到:
掌握能讓機器從數據中「學習」的框架、模型和技術
使用scikit-learn進行機器學習、使用TensorFlow進行深度學習
利用機器學習來做影像分類、情緒分析與智慧Web應用程式
訓練類神經網路、GAN與其它模型
結合機器學習模型與Web應用程式
為機器學習工作清理並準備數據
用深度卷積類神經網路來分類影像
了解評估和調校模型的最佳實作
使用迴歸分析來預測連續目標
利用「集群」來發掘數據中隱藏的模式與結構
使用「情緒分析」深入研究文本和社群媒體數據
上冊包含本書前12章,下冊則包含第13章到第18章。
【下載範例程式檔案】
本書的程式碼是由GitHub託管,可點選下面圖案前往下載:
https://github.com/rasbt/python-machine-learning-book-3rd-edition
【下載本書的彩色圖片】
我們還提供您一個PDF檔案,其中包含本書使用的彩色圖表,可以在此下載:
https://static.packt-cdn.com/downloads/9781789955750_ColorImages.pdf
作者簡介:
Sebastian Raschka 擁有密西根州立大學(Michigan State University)的博士學位,在那裡,他專攻開發將「計算生物學」(computational biology)與「機器學習」結合使用的方法。2018年的夏天,他加入威斯康辛大學麥迪遜分校(University of Wisconsin-Madison),擔任「統計學」的助理教授。他的研究活動包括開發「新的深度學習架構」來解決生物識別(biometrics)領域的問題。
他引以為傲的成就之一是他的著作《Python機器學習》,這也是Packt和Amazon上的暢銷書。本書在2016年榮獲ACM的最佳計算類別獎項(Best of Computing award),並被翻譯成多種不同語言,包括德文、韓文、中文、日文、俄文、波蘭文和義大利文。
Vahid Mirjalili 是密西根州立大學的機械工程博士,專攻大規模「分子結構」計算模擬的新方法研究。他曾是密西根州立大學「iPRoBe實驗室」的一員,致力於各種機器學習在「電腦視覺」與「生物識別」中的應用專案。在「iPRoBe實驗室」與「學術界」耕耘了多年之後,他最近加入3M公司,成為一位研究科學家,利用他的「專業知識」以及應用機器學習與深度學習的「先進技術」,在各種應用程式中解決真實世界的問題,讓生活變得更好。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。二手價 | 數量 |
7折以上 | 1 |
徵求價 | 數量 |
5折 | 1 |
影片僅供參考,實物可能因再版或再刷而有差異
作者:Sebastian Raschka、Vahid Mirjalili
優惠價: 88 折, NT$ 458 NT$ 520
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
Python機器學習第三版(下)
Python Machine Learning - Third Edition
第三版-最新修訂版,新增TensorFlow 2、GAN和強化學習等實用內容
使用Python的scikit-learn和TensorFlow 2融會貫通機器學習與深度學習
循序漸進、由淺入深,好評熱銷再進化!最新修訂的《Python機器學習第三版》是一本不容錯過的全方位指南,也是讀者在建立機器學習系統時的必備參考。有別於其他機器學習教科書,本書使用Python探求機器學習和深度學習的技術精髓,強調豐富實用的程式範例、條理分明的數學解釋,以及直覺友善的圖解說明,帶領讀者探索機器學習的眾多子領域,讓艱澀的概念栩栩如生。
許多讀者告訴我們,他們非常喜歡本書第二版的前12章,因為它們全面介紹了機器學習與Python的科學計算。為了確保這些內容的相關性,我們依據讀者回饋,回顧並修改了這些章節,以支援最新版本的NumPy、SciPy、pandas、matplotlib和scikit-learn,並規劃成本書的上冊。而TensorFlow 2.0更是深度學習領域最振奮人心的事件之一,所有與TensorFlow有關的章節(第13章到第16章,規劃成本書的下冊)都進行了大幅度修改。除了介紹Keras API與scikit-learn的最新功能之外,本書也探討自然語言處理(NLP)的子領域「情緒分析」,以及強化學習(RL)和生成對抗網路(GAN)等時下最流行的AI技術(第17章和第18章)。
無論你是有經驗的程式設計師,或是機器學習新手,或你只想進一步深入了解機器學習的最新發展,本書將是你在機器學習之旅中的絕佳良伴。
在這本書中,你將學到:
掌握能讓機器從數據中「學習」的框架、模型和技術
使用scikit-learn進行機器學習、使用TensorFlow進行深度學習
利用機器學習來做影像分類、情緒分析與智慧Web應用程式
訓練類神經網路、GAN與其它模型
結合機器學習模型與Web應用程式
為機器學習工作清理並準備數據
用深度卷積類神經網路來分類影像
了解評估和調校模型的最佳實作
使用迴歸分析來預測連續目標
利用「集群」來發掘數據中隱藏的模式與結構
使用「情緒分析」深入研究文本和社群媒體數據
上冊包含本書前12章,下冊則包含第13章到第18章。
【下載範例程式檔案】
本書的程式碼是由GitHub託管,可點選下面圖案前往下載:
https://github.com/rasbt/python-machine-learning-book-3rd-edition
【下載本書的彩色圖片】
我們還提供您一個PDF檔案,其中包含本書使用的彩色圖表,可以在此下載:
https://static.packt-cdn.com/downloads/9781789955750_ColorImages.pdf
作者簡介:
Sebastian Raschka 擁有密西根州立大學(Michigan State University)的博士學位,在那裡,他專攻開發將「計算生物學」(computational biology)與「機器學習」結合使用的方法。2018年的夏天,他加入威斯康辛大學麥迪遜分校(University of Wisconsin-Madison),擔任「統計學」的助理教授。他的研究活動包括開發「新的深度學習架構」來解決生物識別(biometrics)領域的問題。
他引以為傲的成就之一是他的著作《Python機器學習》,這也是Packt和Amazon上的暢銷書。本書在2016年榮獲ACM的最佳計算類別獎項(Best of Computing award),並被翻譯成多種不同語言,包括德文、韓文、中文、日文、俄文、波蘭文和義大利文。
Vahid Mirjalili 是密西根州立大學的機械工程博士,專攻大規模「分子結構」計算模擬的新方法研究。他曾是密西根州立大學「iPRoBe實驗室」的一員,致力於各種機器學習在「電腦視覺」與「生物識別」中的應用專案。在「iPRoBe實驗室」與「學術界」耕耘了多年之後,他最近加入3M公司,成為一位研究科學家,利用他的「專業知識」以及應用機器學習與深度學習的「先進技術」,在各種應用程式中解決真實世界的問題,讓生活變得更好。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。二手價 | 數量 |
7折以上 | 1 |
徵求價 | 數量 |
5折 | 1 |
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode