雖然人們對機器學習的興趣已來到很高的程度,但過高的期望往往無法讓專案走得太遠。機器學習(尤其是深度神經網路)在您的組織中,究竟能發揮什麼樣真正的作用呢?這本實戰指南不僅提供此主題相關的最實用資訊,還可協助您開始構建高效的深度學習網路。
本書提供了許多關於深度學習調整、平行化、向量化與構建流程的基礎知識。雖然本書是引用開源Deeplearning4j(DL4J)函式庫來開發生產級工作流程,但裡頭所介紹的基礎知識,適用於任何函式庫。透過真實世界中的範例,您將學習到如何運用DL4J訓練深度網路架構,以及在Spark與Hadoop上運行深度學習工作流程的方法與策略。
■ 深入了解機器學習、尤其是深度學習的整體概念
■ 了解神經網路進化到深度網路的歷程
■ 探索一些主要的深度網路架構,包括卷積網路(CNN)與遞廻網路(RNN)
■ 學習如何針對特定的問題,找出正確對應的深度網路架構
■ 針對一般神經網路與特定的深度網路架構,完整介紹調整相關的基礎知識
■ 透過DL4J的工作流程工具DataVec,把向量化技術運用到不同的資料型態上
■ 了解如何在Spark與Hadoop 上,以原生方式使用DL4J
目錄
前言
chapter 01 機器學習
chapter 02 神經網路和深度學習的基礎
chapter 03 深度網路基礎
chapter 04 深度網路的主要架構
chapter 05 打造深度網路
chapter 06 深度網路的調整
chapter 07 特定深度網路架構的調整
chapter 08 向量化
chapter 09 Spark 上使用深度學習與 DL4J
appendix A 什麼是人工智慧?
appendix B RL4J 與強化學習
appendix C 大家都應該知道的幾個數字
appendix D 神經網路與反向傳播:數學做法
appendix E 使用 ND4J API
appendix F 使用 DataVec
appendix G 使用 DL4J 的源程式碼
appendix H 設定 DL4J 專案
appendix I 設定 DL4J 專案
appendix J DL4J 安裝問題排除
索引
前言
chapter 01 機器學習
chapter 02 神經網路和深度學習的基礎
chapter 03 深度網路基礎
chapter 04 深度網路的主要架構
chapter 05 打造深度網路
chapter 06 深度網路的調整
chapter 07 特定深度網路架構的調整
chapter 08 向量化
chapter 09 Spark 上使用深度學習與 DL4J
appendix A 什麼是人工智慧?
appendix B RL4J 與強化學習
appendix C 大家都應該知道的幾個數字
appendix D 神經網路與反向傳播:數學做法
appendix E 使用 ND4J API
appendix F 使用 DataVec
appendix G 使用 DL4J 的源程式碼
...
購物須知
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱
退換貨原則、
二手CD、DVD退換貨說明。