作者:施威銘研究室
定價:NT$ 480
二手價:69 折,NT$ 330
限量商品已售完
我又不是程式設計師, 為什麼逼我寫程式?學 Python 到底要幹嘛?
大家都說要學,可是到底有沒有 Python 這麼好用的八卦啊?
█ 全民 AI 時代來臨, 資料科學順勢崛起
身在數位新世代, 任何行業都會接觸到龐大的資料, 而 Python 正是當今最常用的大數據 (Big Data) 處理工具。考慮到世界各國紛紛搶著將程式語言列入正規教育體系、台灣在 108 年度高中課綱跟進, 資料科學 (data science) 與機器學習 (machine learning) 又成為時下最搶手的新興行業, 學 Python 已經蔚為全民運動。
再不學 Python, 你將喪失競爭力, 等著淪為昨日黃花!
█ 對未來徬徨的文科生, 也能靠程式培養斜槓好本事
為什麼學程式一定要數學好、懂理論?大學修過的計概、微積分或統計早就忘光光了, 怎麼辦?
學 Python 絕非理科系學生的專利, 任何人都能輕鬆學會並運用 Python。用 Python 處理資料絕對出乎你意料地容易──無須高深技術或數學知識, 只需撰寫短短幾行程式碼, 便能輕鬆獲得統計數據和繪製圖表。一旦學會程式/資料科學技能, 再與你自身科系的知識及專長結合, 便能創造出獨一無二的跨領域價值, 大大提升就業前景、不怕畢業即失業!
█ 從做中學, 零程式基礎也保證學得會
從 Python 的基本語法與重要基礎觀念, 到使用 Python 抓取報表、分析資料關聯、預測資料趨勢、繪製各種圖表, 甚至看似艱深、實際上簡單易用的機器學習模型...在耳聞已久的神秘面紗底下, 透過這本書引進門, 各位將發現使用 Python 來運用這些工具, 居然是如此簡單。
本書由同樣文科系出身的資深程式學習者操刀, 跳脫電腦書過去沉悶無趣的印象, 改以輕鬆又不失幽默的筆法、簡單但超實用的範例, 一步步帶各位體驗 Python 語言及資料科學的驚人威力。
學 Python 從未如此簡單──你到底還在等什麼?
本書特色:
★ 以易讀、高親和力的方式講解 Python 語言 (變數、邏輯判斷、迴圈、資料結構、函式...等) 及資料科學套件, 超級零基礎文科生也學得會, 從第一頁就有感!
★ 用簡單套件打好資料科學基礎, 零基礎、高效率處理好大量資料, 包括:NumPy、Pandas、matplotlib、seaborn、scikit-learn、requests 等熱門套件。
★ 還不知道學 Python 能做什麼嗎?本書用極短程式碼完成超實用範例, 包括:整理報表、統計試算、繪製圖表、爬取網頁、預測分析、機器學習...等等。
★ 大數據時代必備的資料科學基礎, 從基礎統計學到機器學習, 你將快速搞懂像是中位數、四分位數、變異數、標準差、直方圖 (histogram)、箱型圖 (box plot)、相關係數 (correlation coefficient)、決定係數 (R2)、精準率與召回率 (Precision/Recall)、線性迴歸 (linear regression)、K-近鄰 (KNN)、邏輯斯迴歸 (Logistic Regression)、支援向量機 (SVM)、主成分分析 (PCA)、標籤 (labels)、特徵 (features)、分類器 (classifier)、標準化 (standardization)、降維 (dimension reduction)...
★ 特別附贈 Bonus:線上即時更新的 Jupyter Notebook 和 Anaconda 安裝操作手冊
作者簡介:
施威銘研究室
持續專注科技教育, 卓越的品質是我們的堅持。致力推廣「Learning by doing 從學理到實作」, 希望培養更多的 AI 人才, 實踐學以致用的理想。
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則、二手CD、DVD退換貨說明。作者:施威銘研究室
二手價:69 折,NT$ 330 NT$ 480
限量商品已售完
我又不是程式設計師, 為什麼逼我寫程式?學 Python 到底要幹嘛?
大家都說要學,可是到底有沒有 Python 這麼好用的八卦啊?
█ 全民 AI 時代來臨, 資料科學順勢崛起
身在數位新世代, 任何行業都會接觸到龐大的資料, 而 Python 正是當今最常用的大數據 (Big Data) 處理工具。考慮到世界各國紛紛搶著將程式語言列入正規教育體系、台灣在 108 年度高中課綱跟進, 資料科學 (data science) 與機器學習 (machine learning) 又成為時下最搶手的新興行業, 學 Python 已經蔚為全民運動。
再不學 Python, 你將喪失競爭力, 等著淪為昨日黃花!
█ 對未來徬徨的文科生, 也能靠程式培養斜槓好本事
為什麼學程式一定要數學好、懂理論?大學修過的計概、微積分或統計早就忘光光了, 怎麼辦?
學 Python 絕非理科系學生的專利, 任何人都能輕鬆學會並運用 Python。用 Python 處理資料絕對出乎你意料地容易──無須高深技術或數學知識, 只需撰寫短短幾行程式碼, 便能輕鬆獲得統計數據和繪製圖表。一旦學會程式/資料科學技能, 再與你自身科系的知識及專長結合, 便能創造出獨一無二的跨領域價值, 大大提升就業前景、不怕畢業即失業!
█ 從做中學, 零程式基礎也保證學得會
從 Python 的基本語法與重要基礎觀念, 到使用 Python 抓取報表、分析資料關聯、預測資料趨勢、繪製各種圖表, 甚至看似艱深、實際上簡單易用的機器學習模型...在耳聞已久的神秘面紗底下, 透過這本書引進門, 各位將發現使用 Python 來運用這些工具, 居然是如此簡單。
本書由同樣文科系出身的資深程式學習者操刀, 跳脫電腦書過去沉悶無趣的印象, 改以輕鬆又不失幽默的筆法、簡單但超實用的範例, 一步步帶各位體驗 Python 語言及資料科學的驚人威力。
學 Python 從未如此簡單──你到底還在等什麼?
本書特色:
★ 以易讀、高親和力的方式講解 Python 語言 (變數、邏輯判斷、迴圈、資料結構、函式...等) 及資料科學套件, 超級零基礎文科生也學得會, 從第一頁就有感!
★ 用簡單套件打好資料科學基礎, 零基礎、高效率處理好大量資料, 包括:NumPy、Pandas、matplotlib、seaborn、scikit-learn、requests 等熱門套件。
★ 還不知道學 Python 能做什麼嗎?本書用極短程式碼完成超實用範例, 包括:整理報表、統計試算、繪製圖表、爬取網頁、預測分析、機器學習...等等。
★ 大數據時代必備的資料科學基礎, 從基礎統計學到機器學習, 你將快速搞懂像是中位數、四分位數、變異數、標準差、直方圖 (histogram)、箱型圖 (box plot)、相關係數 (correlation coefficient)、決定係數 (R2)、精準率與召回率 (Precision/Recall)、線性迴歸 (linear regression)、K-近鄰 (KNN)、邏輯斯迴歸 (Logistic Regression)、支援向量機 (SVM)、主成分分析 (PCA)、標籤 (labels)、特徵 (features)、分類器 (classifier)、標準化 (standardization)、降維 (dimension reduction)...
★ 特別附贈 Bonus:線上即時更新的 Jupyter Notebook 和 Anaconda 安裝操作手冊
作者簡介:
施威銘研究室
持續專注科技教育, 卓越的品質是我們的堅持。致力推廣「Learning by doing 從學理到實作」, 希望培養更多的 AI 人才, 實踐學以致用的理想。
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則、二手CD、DVD退換貨說明。※ 二手徵求後,有綁定line通知的讀者,
該二手書結帳減5元。(減5元可累加)
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode
|
||||||||||||||||||
|
||||||||||||||||||
|