內容簡介:幫助您在最短的時間內學到資料科學必備的技術與基礎知識
本書的目標族群是想成為資料分析工程師的讀者、對Python有一定程度了解的工程師。所謂「有一定程度了解」,指的是能讀懂Python官方手冊的程度,本書只介紹最低限度所需的Python語法與規格。至於資料分析方法,會使用NumPy或pandas介紹處理資料的方法,接著會介紹以Matplolib具體呈現資料的方法,最後再解說以scikit-learn進行機器學習的分類或預測的方法。除了工具的使用方式之外,也會解說基礎的數學知識。
搞懂資料分析與機器學習必懂的數學知識
要分析資料或是進行機器學習,就必須具備相關的數學知識,所以本書將從數學公式開始講解,直到大家能了解數學公式為止。再者,實際分析資料時,收集資期待各位讀者能透過本書全面地學習資料分析,進而踏出成為資料分析工程師的第一步。
.資料分析必備的基礎數學知識
.基本的Python語法
.使用NumPy或pandas處理資料的方法
.利用Matplolib進行資料視覺化的方法
.以scikit-learn進行機器學習的分類或預測
.實作網路爬蟲
.實作自然語言處理
.實作影像分類
目錄
章節說明:Chapter 1 資料分析工程師所扮演的角色
1.1 資料分析的世界
1.2 機械學習的定位與流程
1.3 主要用於資料分析的套件
Chapter 2 Python與環境
2.1 建置執行環境
2.2 Python的基礎
2.3 Jupyter Notebook
Chapter 3 數學的基礎
3.1 閱讀公式所需的基礎知識
3.2 線性代數
3.3 基礎解析
3.4 機率與統計
Chapter 4 利用函式庫分析
4.1 NumPy
4.2 pandas
4.3 Matplotlib
4.4 scikit-learn
Chapter 5 進階:資料的收集與加工
5.1 網路爬蟲
5.2 自然語言的處理
5.3 圖檔處理
章節說明:Chapter 1 資料分析工程師所扮演的角色
1.1 資料分析的世界
1.2 機械學習的定位與流程
1.3 主要用於資料分析的套件
Chapter 2 Python與環境
2.1 建置執行環境
2.2 Python的基礎
2.3 Jupyter Notebook
Chapter 3 數學的基礎
3.1 閱讀公式所需的基礎知識
3.2 線性代數
3.3 基礎解析
3.4 機率與統計
Chapter 4 利用函式庫分析
4.1 NumPy
4.2 pandas
4.3 Matplotlib
4.4 scikit-learn
Chapter 5 進階:資料的收集與加工
5.1 網路爬蟲
5.2 自然語言的處理
5.3 圖檔處理
購物須知
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱
退換貨原則、
二手CD、DVD退換貨說明。