作者:陳為、沈則潛、陶煜波
定價:NT$ 750
優惠價:9 折,NT$ 675
本商品已下架
千言萬語不如一圖,將文字及數字化為精簡的圖表,是處理巨量資料的第一步
我們常見的長條圖、餅狀圖、折線圖是怎麼來的?
當2維的圖表無法直接被感官吸收時,3維的圖表如何製作?
文字數字能視覺化,音樂呢?視訊呢?
視覺化的基礎為數學,這些數學公式的重要性為何?
目前全球領先的資料視覺化的機構及學術單位有哪些?
隨著資料時代的來臨,巨量資料的分析、採擷與視覺化已經成為資訊技術發展的迫切需求。面對目前科學視覺化、資訊視覺化、可視分析研究和應用的新形勢,需要發展新的複雜資料的處理、分析與視覺化方法,並圍繞實際科學和社會問題的求解設計高效的人機互動介面。
本書從研究者的角度,介紹了資料視覺化的定義、方法、功效和實用軟體,將目前全球最流行的資料視覺化做了一個最完整的介紹,也是技術性最強,實用性最接近真正應用的工具及理論書!
可作為初學者入門的精靈,是有關科學研究和教育人員從事視覺化研究和開發的一本實用的參考書。
名人推薦:
Big Data 時代來臨,從前習慣將資料分類,使用統計的方式找出規律。但在Big Data 時代,每一筆資料都要被重視(Every piece of data counts)。還好硬體技術不斷進步,再加上雲端時代的資源合理分配,電腦及網路幫了極大的忙,讓我們真的可以深入每一筆資料找出重點,而非簡單的分類及整合而已。
然而到了公元2020 年,我們將擁有44ZB 的資料量( 資料來源EMC),44ZB 的資料量是多少呢?
44 X 1,000,000,000,000,000,000,000 個位元組。在看慣了超大資料的我們可能對這後面的21 個0 沒什麼感覺,但換個方式來看,用最新
的iPhone 6 64GB 的大小來裝這些資料疊起來,可以來回地球和月球15 次!數值只要一進入天文數字,就進入了數學家的領域,真正面對資料的使用者也就麻木了。事實上,到2020 年為止,就算莫爾定律可行,屆時的電腦計算能力,很可能剛剛好處理這些資料而已,硬體及軟體的能力也得隨著資料量一直演化。
就算電腦做到了,人腦呢? 目前世界上還沒出現Lucy 中的100% 全腦人類,你我都是平凡人,還是得不斷消化這些資料成為有用的資訊,這麼大量的資料及資訊,科學家不斷找出最適合人類吸收的方式。千語萬語不如一圖,有圖有真相,用視覺化的方式把資料映射到人腦中,一直是最好的方式。
技術及理論的書籍,極少出現在中文的出版物中,偏尋英文書籍,提到資料視覺化的書也寥寥無幾。這本由真正專業及投入資料視覺化的學者所撰寫的書,在2013 年底看到書時,就一頭栽入,就算不是數學或統計專業的讀者,也有強大的吸引力。這本難得一見的好書,絕對是你我應付大數據時代的重要工具之一。
今日我們面對全數位化的Big Data 世界,有如原始人面對浩瀚的無垠銀河,還好我們擁有了處理這些無限大資料的基礎,相信你我都不會迷失在這些0 與1 的巨流中。
胡嘉璽
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
4折 | 1 |
5折 | 3 |
7折 | 1 |
8折以上 | 1 |
影片僅供參考,實物可能因再版或再刷而有差異
作者:陳為、沈則潛、陶煜波
優惠價: 9 折, NT$ 675 NT$ 750
本商品已下架
千言萬語不如一圖,將文字及數字化為精簡的圖表,是處理巨量資料的第一步
我們常見的長條圖、餅狀圖、折線圖是怎麼來的?
當2維的圖表無法直接被感官吸收時,3維的圖表如何製作?
文字數字能視覺化,音樂呢?視訊呢?
視覺化的基礎為數學,這些數學公式的重要性為何?
目前全球領先的資料視覺化的機構及學術單位有哪些?
隨著資料時代的來臨,巨量資料的分析、採擷與視覺化已經成為資訊技術發展的迫切需求。面對目前科學視覺化、資訊視覺化、可視分析研究和應用的新形勢,需要發展新的複雜資料的處理、分析與視覺化方法,並圍繞實際科學和社會問題的求解設計高效的人機互動介面。
本書從研究者的角度,介紹了資料視覺化的定義、方法、功效和實用軟體,將目前全球最流行的資料視覺化做了一個最完整的介紹,也是技術性最強,實用性最接近真正應用的工具及理論書!
可作為初學者入門的精靈,是有關科學研究和教育人員從事視覺化研究和開發的一本實用的參考書。
名人推薦:
Big Data 時代來臨,從前習慣將資料分類,使用統計的方式找出規律。但在Big Data 時代,每一筆資料都要被重視(Every piece of data counts)。還好硬體技術不斷進步,再加上雲端時代的資源合理分配,電腦及網路幫了極大的忙,讓我們真的可以深入每一筆資料找出重點,而非簡單的分類及整合而已。
然而到了公元2020 年,我們將擁有44ZB 的資料量( 資料來源EMC),44ZB 的資料量是多少呢?
44 X 1,000,000,000,000,000,000,000 個位元組。在看慣了超大資料的我們可能對這後面的21 個0 沒什麼感覺,但換個方式來看,用最新
的iPhone 6 64GB 的大小來裝這些資料疊起來,可以來回地球和月球15 次!數值只要一進入天文數字,就進入了數學家的領域,真正面對資料的使用者也就麻木了。事實上,到2020 年為止,就算莫爾定律可行,屆時的電腦計算能力,很可能剛剛好處理這些資料而已,硬體及軟體的能力也得隨著資料量一直演化。
就算電腦做到了,人腦呢? 目前世界上還沒出現Lucy 中的100% 全腦人類,你我都是平凡人,還是得不斷消化這些資料成為有用的資訊,這麼大量的資料及資訊,科學家不斷找出最適合人類吸收的方式。千語萬語不如一圖,有圖有真相,用視覺化的方式把資料映射到人腦中,一直是最好的方式。
技術及理論的書籍,極少出現在中文的出版物中,偏尋英文書籍,提到資料視覺化的書也寥寥無幾。這本由真正專業及投入資料視覺化的學者所撰寫的書,在2013 年底看到書時,就一頭栽入,就算不是數學或統計專業的讀者,也有強大的吸引力。這本難得一見的好書,絕對是你我應付大數據時代的重要工具之一。
今日我們面對全數位化的Big Data 世界,有如原始人面對浩瀚的無垠銀河,還好我們擁有了處理這些無限大資料的基礎,相信你我都不會迷失在這些0 與1 的巨流中。
胡嘉璽
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
4折 | 1 |
5折 | 3 |
7折 | 1 |
8折以上 | 1 |
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode