作者:李金洪
定價:NT$ 880
優惠價:9 折,NT$ 792
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
深度學習擅長處理結構規則的多維資料(歐氏空間),但現實生活中,很多不規則的資料如:社群、電子商務、交通領域,多是之間的關聯資料。彼此間以龐大的節點基礎與複雜的互動關係形成了特有的圖結構(或稱拓撲結構資料),這些資料稱為「非歐氏空間資料」,並不適合用深度學習的模型去分析。
圖神經網路(Graph Neural Networks, GNN)是為了處理結構不規則資料而產生的,主要利用圖結構的資料,透過機器學習的方法進行擬合、預測等。
〇 在結構化場景中,GNN 被廣泛應用在社群網站、推薦系統、物理系統、化學分子預測、知識圖譜等領域。
〇 在非結構化領域,GNN 可以用在圖型和文字等領域。
〇 在其他領域,還有圖生成模型和使用 GNN 來解決組合最佳化問題的場景。
市面上充滿 NN 的書,但卻沒有一本完整說明 GNN,倘若不快點學這個新一代的神經網路,你會用的普通神經網路馬上就會落伍了!非歐氏空間才是最貼近人類生活的世界,而要真正掌握非歐氏空間的問題解決,GNN 是你一定要學的技術,就由本書一步步帶領你完全攻略!
〇 使用 Graph 概念取代傳統的歐氏空間神經元
〇 最好用的 PyTorch + Anaconda + Jupyter
〇 從基礎的 CNN、RNN、GAN 開始上手神經網路
〇 了解基礎的啟動函數、損失函數、L1/L2、交叉熵、Softmax 等概念
〇 NLP 使用神經網路處理 + 多頭注意力機制
〇 Few-shot/Zero-shot 的神經網路設計
〇 空間域的使用,使用 DGL、Networkx
〇 利用 GNN 進行論文分類
本書特色
~GNN 最強入門參考書~
● 以初學者角度從零開始講解,消除讀者學習過程跳躍感
● 理論和程式結合,便於讀者學以致用
● 知識系統,逐層遞進
● 內容貼近技術趨勢
● 圖文結合,化繁為簡
● 在基礎原理之上,注重通用規律
作者簡介:
李金洪
精通 C、Python、Java 語言,擅長神經網路、演算、協定分析、移動互聯網安全架構等技術,先後擔任過 CAD 演算工程師、架構師、專案經理、部門經理等職位。參與過深度學習領域某移動互聯網後臺的 OCR 項目,某娛樂節目機器人的語音辨識、聲紋識別專案,金融領域的若干分類專案。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
4折 | 1 |
作者:李金洪
優惠價: 9 折, NT$ 792 NT$ 880
運送方式:超商取貨、宅配取貨
銷售地區:全球
訂購後,立即為您進貨
深度學習擅長處理結構規則的多維資料(歐氏空間),但現實生活中,很多不規則的資料如:社群、電子商務、交通領域,多是之間的關聯資料。彼此間以龐大的節點基礎與複雜的互動關係形成了特有的圖結構(或稱拓撲結構資料),這些資料稱為「非歐氏空間資料」,並不適合用深度學習的模型去分析。
圖神經網路(Graph Neural Networks, GNN)是為了處理結構不規則資料而產生的,主要利用圖結構的資料,透過機器學習的方法進行擬合、預測等。
〇 在結構化場景中,GNN 被廣泛應用在社群網站、推薦系統、物理系統、化學分子預測、知識圖譜等領域。
〇 在非結構化領域,GNN 可以用在圖型和文字等領域。
〇 在其他領域,還有圖生成模型和使用 GNN 來解決組合最佳化問題的場景。
市面上充滿 NN 的書,但卻沒有一本完整說明 GNN,倘若不快點學這個新一代的神經網路,你會用的普通神經網路馬上就會落伍了!非歐氏空間才是最貼近人類生活的世界,而要真正掌握非歐氏空間的問題解決,GNN 是你一定要學的技術,就由本書一步步帶領你完全攻略!
〇 使用 Graph 概念取代傳統的歐氏空間神經元
〇 最好用的 PyTorch + Anaconda + Jupyter
〇 從基礎的 CNN、RNN、GAN 開始上手神經網路
〇 了解基礎的啟動函數、損失函數、L1/L2、交叉熵、Softmax 等概念
〇 NLP 使用神經網路處理 + 多頭注意力機制
〇 Few-shot/Zero-shot 的神經網路設計
〇 空間域的使用,使用 DGL、Networkx
〇 利用 GNN 進行論文分類
本書特色
~GNN 最強入門參考書~
● 以初學者角度從零開始講解,消除讀者學習過程跳躍感
● 理論和程式結合,便於讀者學以致用
● 知識系統,逐層遞進
● 內容貼近技術趨勢
● 圖文結合,化繁為簡
● 在基礎原理之上,注重通用規律
作者簡介:
李金洪
精通 C、Python、Java 語言,擅長神經網路、演算、協定分析、移動互聯網安全架構等技術,先後擔任過 CAD 演算工程師、架構師、專案經理、部門經理等職位。參與過深度學習領域某移動互聯網後臺的 OCR 項目,某娛樂節目機器人的語音辨識、聲紋識別專案,金融領域的若干分類專案。
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。徵求價 | 數量 |
4折 | 1 |
請在手機上開啟Line應用程式,點選搜尋欄位旁的掃描圖示
即可掃描此ORcode