為什麼要學數學?
反思、論證、練習與解題
跟著數學家探索世界
前師大數學系主任 洪萬生 老師 審訂
NHK、《日本經濟新聞》、《東洋經濟週刊》等日本各大媒體雜誌報導,
東京大學畢業、數學奧林匹克參賽者,
日本最強數學補習班創辦人、數學教育專家
帶你從國中數學開始,
探索基礎數學領域:幾何、代數、函數、機率與統計學。
數學領域的價值與意義是什麼?
數學家如何推演、證明數學定理?
從國中數學,建立數學素養與能力
數學史、定義與公式解說、習題演練……
從現實到抽象,將文字化為數學語言。
數學素養的培養,
目的在於解決問題的能力!
日本著名數學補習班──永野塾,主持人永野裕之,累積十數年教學經驗,有感於學生會解題、考試拿高分,卻沒有數學素養,因而決定拆解國中數學,從數學史的發展切入,提醒大家,學習數學目的在於培養解決問題的能力。在反思、論證、練習與解題的過程中,體會從現實到抽象,運用人類獨具的想像力,將文字化為簡潔的數學語言,最終建立數學素養與能力。
「圖形──幾何學」的學習重點:
I「論證」方法
II 分類的方法與運用
III採取不同的視角
「數與式──代數學」的學習重點:
I 想像力
II 合理的過程
III 簡化題目
「函數──分析學」的學習重點:
I 變數
II 因果關係
III 1對1對應(圖)
「資料的運用──機率、統計學」的學習重點:
I 比較的合理性
II 資料的整理
III 隨機
作者簡介:
永野裕之
1974年生於東京。日本東京大學理學部地球行星物理學系畢業。日本東京大學宇宙科學研究所(現JAXA)肄業。高中時期曾參加數學奧林匹克競賽。現為個別輔導補習班・永野塾數學補習班負責人。數學補習班也招收成年人,廣受日本各界媒體報導。日文著作有《寫給大人的數學魔法書》、《統計學的數學教室》(鑽石社)、《再次接觸微積分》(昂舍)、《東大教授之父親授 腦袋變聰明的學習法》(PHP研究社)、《喚醒你與生俱來的數學力》(台灣臉譜出版)、《數學式的邏輯思考入門》(SCC)等等。
譯者簡介:
衛宮紘
清華大學原子科學院學士班畢。現為自由譯者。譯作有《上司完全使用手冊》(東販)、《超慢跑入門》(商周)、《男人懂了這些更成功》(潮客風)、《世界第一簡單電力系統》(世茂)……等。賜教信箱:emiyahiro@hotmail.com.tw
審訂者簡介:
洪萬生
美國紐約城市大學(CUNY)科學史博士,國立台灣師範大學數學系學士、碩士。國立台灣師範大學數學系教授兼主任(2007/8/1-2009/7/31)、台灣數學教育學會理事長(2007-2009)、國際科學史學院通訊會員、Historia Mathematica(國際數學史雜誌)編輯委員、《HPM通訊》發行人、台灣數學(虛擬)博物館創始人之一。
作者序
一開始我必須先說清楚,本書不是從頭學習國中數學。
本書沿循著數學歷史,以國中數學來傳達學習數學的意義與價值。
你還記得升上國中一年級時的春天嗎?背後少了雙背帶書包,內心是不是感到些許不安呢?穿著寬鬆的制服、看見校園內學長姐的姿態,是不是強烈意識到自己登上大人的階梯呢?我到現在依然記得,開始上數學課時內心萌生「我已經不是小孩子」的感覺。
雖然這麼說,但不久之前還是小學生,實際上也還是小孩子。即便從算數轉為數學,對名稱上的變化感到強烈衝擊,也沒有足夠的能力瞭解其中的差異。
我們經常聽到──特別是對數學感到棘手的人──
這樣說:「出社會後,數學就用不到啦,為什麼還要學得那麼辛苦呢?雖然加減乘除還會用到,但學習數學根本就沒有好處。」
對數學老師來說,這是非常悲哀的想法,相信拿起這本書的你肯定沒有這樣的想法,但這也是無可奈何的,對知性、感性都尚未成熟的國中生來說,想要他們瞭解學習數學的意義、價值,的確是相當困難的事情。
然而,轉眼間升上高中,心智皆將成熟的時候,數學卻變得格外困難。不要說瞭解其中的意義、價值,大多數人煞費苦心才勉強考到及格。
正因為這樣,所以我才執筆本書。
數學是人類從史前時代,綿綿傳承下來的睿智結晶。嘗試翻閱數學的歷史,我想各位成熟的大人也會類似的感觸。在人類獲得永不褪色智慧的故事當中,為了讓讀者能體會箇中感動,我全心全意著述了本書。
本書將國中學到的數學分成幾何學(第1章)、代數學(第2章)、分析學(第3章)、機率統計學(第4章)四章,各章前半部分記述相關的數學史,後半部分統整希望讀者在該領域學得的東西。另外,內容也適時穿插「問題」,但本書(基本上)不是學習用的教科書,不擅長數學的讀者可以快速瀏覽感到困難的地方。當然,自負有能力的讀者,請一定要挑戰看看這些問題,體會解開問題的樂趣。
那麼,我們就開始吧。接觸後述內容中天才們的偉業之後:
「啊啊,數學果然是全民應該學習的學問。」
若能產生這樣的想法,這是筆者我最大的榮幸。
一開始我必須先說清楚,本書不是從頭學習國中數學。
本書沿循著數學歷史,以國中數學來傳達學習數學的意義與價值。
你還記得升上國中一年級時的春天嗎?背後少了雙背帶書包,內心是不是感到些許不安呢?穿著寬鬆的制服、看見校園內學長姐的姿態,是不是強烈意識到自己登上大人的階梯呢?我到現在依然記得,開始上數學課時內心萌生「我已經不是小孩子」的感覺。
雖然這麼說,但不久之前還是小學生,實際上也還是小孩子。即便從算數轉為數學,對名稱上的變化感到強烈衝擊,也沒有足夠的能力瞭解其中的差異。
我們經常聽到──特別是對數...
目錄
序言
第1章 圖形──幾何學
哲學始於幾何學
巴斯卡的說服術
廣為流傳《幾何原本》的定義與公理
「分類」方法與運用
不同視角──訓練水平思考能力
學會「好的形式」──證明(論證)推演方法(國二)
何謂「正確的推論」?
證明的第一步──三角形的全等性質(國二)
「外項的積=內項的積」──三角形的相似性質(國三)
相似的問題練習
國中數學的重點──畢氏定理(國三)
蘊含許多定理的「美麗圖形」──圓(國二、國三)
圓的題目練習
練習從「相反的視角」切入──面積和長度(國二)
練習「轉換的視角」──畢氏定理的應用(國二)
第2章 數與式──代數學
西方希臘、東方印度
長年不被接受的「負數」概念
誕生於古代東方文明的「代數學」
兩位代數學之父
求解方程式的要素
算術和數學的差異
挑戰各種公式解
演繹思考的利弊
概念性的數──負數(國一)
「負數×負數=正數」的理由
看不見卻存在的數──平方根(國二)
適用於《幾何原本》的正確解題法──一次方程式(國一)
代入法才是消去未知數的捷徑──聯立方程式(國一)
挑戰國中數學最難的數學式變形──二次方程式(國二)
簡化題目的練習──方程式的應用(國一到國三)
第3章 函數──分析學
邂逅「變數
笛卡爾的「革命」──解析幾何學的誕生
歐拉開創的「分析學」
日本的「函數」淵源
因果關係
1對1對應的用法──「計算」的語源
邂逅變數──函數
推導函數的基本──變化的比例
追查原因──函數的利用(國一到國三)
觀察變化──函數與圖形(國一至國三)
第4章 資料的運用──機率、統計學
機率論發展初期的爭論①
機率論發展初期的爭論②
機率論發展初期的爭論③
「拉普拉斯」的惡魔
統計學家最有吸引力嗎?
近代統計學之父
南丁格爾與統計學
茶會與推測統計
隨機的困難度與重要性
確認「出現機率相同」──機率(國三)
掌握資料的特徵──資料整理(國三)
由部分推測全體──抽樣調查(國三)
結語
日文參考文獻
數學史相關年表
序言
第1章 圖形──幾何學
哲學始於幾何學
巴斯卡的說服術
廣為流傳《幾何原本》的定義與公理
「分類」方法與運用
不同視角──訓練水平思考能力
學會「好的形式」──證明(論證)推演方法(國二)
何謂「正確的推論」?
證明的第一步──三角形的全等性質(國二)
「外項的積=內項的積」──三角形的相似性質(國三)
相似的問題練習
國中數學的重點──畢氏定理(國三)
蘊含許多定理的「美麗圖形」──圓(國二、國三)
圓的題目練習
練習從「相反的視角」切入──面積和長度(國二)
練習「轉換的視角」──畢氏定...
購物須知
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。