《大域微分幾何》全書共三卷。內容主要對象是彎曲的空間,上卷大體是作者多次在臺大數學研究所授課的講稿,以此為基礎,展開中、下両卷,進入大域幾何研究的專業。
這套書三卷分別是「Riemann幾何基礎」、「活動標架法」(moving frames)及「幾何變分學」,涵蓋九大篇,共三十章,並於上卷與下卷加入〈前篇〉及〈衍篇〉各三章,以作為微分幾何「基礎入門」與「延伸進階學習」之用。
中卷「活動標架法」先介紹「張量的微積分」,從「平均」的視角出發,導入均曲率、Diverence與Laplacian等相關的幾何概念,刻劃結構方程的意涵。然後藉由微分式(differential form)的運算,發展「活動標架法」,有效處理彎曲空間的大域問題。
本書特色:
1. 全書以深入淺出的解說方式,藉由直觀,逐步引入艱深的幾何硏究。
2. 問題中心論:內容的鋪陳,經常圍繞著自然的提問。
3. 採二維計算方式呈現數學式子的推演,使學習者一目瞭然,容易掌握運算過程。
4. 適合「微分幾何學」進階研究,及天文物理、生化、土木領域之延伸應用。
作者簡介:
黃武雄
學歷:美國萊斯(Rice)大學數學博士
經歷:國立臺灣大學數學系教授、中央研究院數學所研究員
相關著作:幾何專業研究論文之外,著有通俗數學讀物《初等微分幾何講稿》、《中西數學簡史》、《小樹的冬天》。
作者序
中卷前言
中卷的主題是活動標架法。含三篇
篇四 張量的微積分
篇五 Riemann幾何的結構
六 活動標架法與大域幾何
共九章,即Ch.13-21。
微分幾何處理的對象是彎曲的空間。上卷已經建立了彎曲空間的基本概念,例如向量場的共變微分與曲率張量,並藉由彎曲空間中測地線的變分來探測彎曲空間大域的幾何性質,例如對正、負曲率空間,分別有Bonnet-Myers定理、與Hadamard定理。
本書中卷先介紹張量的微積分,我們從平均的視角出發,引入均曲率、divergence、與Laplacian,使這些概念具有幾何的直觀,而不只做抽象的定義。活動標架法(moving frames)是處理彎曲空間簡潔而有效的方法,也是中卷的主題。
活動標架法的基本概念是微分式(differential form)。在本書上卷前篇的章B中,我們已經鋪陳ℝn中的微分式,並看到它如何被運用、被拿來有效而漂亮的計算出n度球ℝ、Clifford環面、與Lorentz雙曲面ℍn的Gauss曲率(高維時稱為截曲率)。這是截曲率為常數,而且分別為正、零與負值的三種典型。
微分式是一階世界的概念,不屬於零階世界,亦即:在一個點的微分式,必須把那個點附近的無窮小範圍,放大無窮多倍,這時我們才看得到微分式。例如微分式ω在一塊面域D上的積分,如果用這樣的方式了解,便一目瞭然:原來微分式可以從積分符號中剝落出來,成為一個獨立的概念[篇四,參見Ch.15,§7]。把無窮小世界的微分式,在一塊面域D上的無窮多點「累加」,就得到ω在D上的積分值。微分式ω本身,例如:ω=dxdy是一個獨立游走的概念。這涵意是深遠的。
當然,向量場本身也是一階產物,但因它與零階世界放在一起,直觀上還一目瞭然,所以問題不大。但微分式放到高階世界來了解,相對容易養成直觀,尤其取了外微分之後。
古典的張量分析(tensor analysis)與向量場的共變微分,是處理彎曲空間的一種直接而廣泛沿用的方法,它們容易懂,但不好算。微分式則反過來,不好懂,但容易算,算起來尤其簡潔有效。而且一旦掌握,更可以用來分析彎曲空間(亦即Riemann流形)的幾何結構[篇五]:從建立結構方程開始,清楚的洞悉Riemann流形的局部性質。這件事在上卷曲面論基本定理[Ch.4, §2]中,討論高維超曲面的存在與唯一的時候,已經鋪陳了伏筆。到中卷篇五,藉由Ch.16子流形的結構方程、Ch.18活動標架法的運算基礎、與commutation formula這三樣重要題材,我們進一步把彎曲空間的局部幾何徹底釐清。從這裡借助invariance,躍入大域世界:1943年陳省身漂亮的運用moving frames,給予高維Gauss-Bonnet定理一個內在證明,開啟了大域幾何的紀元。這是篇六的第19章。
就這樣,我們走進篇六,討論活動標架法在大域幾何的重要應用。我們引入Bochner著名的的技法,證明幾個經典的大域定理,如Lishnerowicz、Bochner、Hopf-Alexandrov、Minkowski、Reilly等人的貢獻。
最後一節[Ch.21, §2]我們特別提到Obata定理,其中一個原因是Obata讓我們又細細回顧古典曲面論與測地線變分的技法,把它拿來處理某類Riemann流形M在Laplacian特徵值λ1取得最小的狀態(即敲音最低沉時)。證明此時Riemann流形M必定是最勻稱的n度球,這是球面一個深刻的特徵定理。
中卷前言
中卷的主題是活動標架法。含三篇
篇四 張量的微積分
篇五 Riemann幾何的結構
六 活動標架法與大域幾何
共九章,即Ch.13-21。
微分幾何處理的對象是彎曲的空間。上卷已經建立了彎曲空間的基本概念,例如向量場的共變微分與曲率張量,並藉由彎曲空間中測地線的變分來探測彎曲空間大域的幾何性質,例如對正、負曲率空間,分別有Bonnet-Myers定理、與Hadamard定理。
本書中卷先介紹張量的微積分,我們從平均的視角出發,引入均曲率、divergence、與Laplacian,使這些概念具有幾何的直觀,而不只做抽象的定義。活...
目錄
中卷前言
中卷 活動標架法
篇四 張量的微積分
第13章 平均的概念
第14章 子流形,均曲率與Laplacian
第15章 外微分與Divergence定理
篇五 Riemann幾何的結構
第16章 結構方程
第17章 張量的共變微分
第18章 活動標架法的運算基礎
篇六 活動標架法與大域幾何
第19章 高維流形的Gauss-Bonnet-Chern定理
第20章 Bochner's Technique
第21章 Laplacian的特徵值
全書參考文獻
全書索引
中卷前言
中卷 活動標架法
篇四 張量的微積分
第13章 平均的概念
第14章 子流形,均曲率與Laplacian
第15章 外微分與Divergence定理
篇五 Riemann幾何的結構
第16章 結構方程
第17章 張量的共變微分
第18章 活動標架法的運算基礎
篇六 活動標架法與大域幾何
第19章 高維流形的Gauss-Bonnet-Chern定理
第20章 Bochner's Technique
第21章 Laplacian的特徵值
全書參考文獻
全書索引
購物須知
關於二手書說明:
商品建檔資料為新書及二手書共用,因是二手商品,實際狀況可能已與建檔資料有差異,購買二手書時,請務必檢視商品書況、備註說明及書況影片,收到商品將以書況影片內呈現為準。若有差異時僅可提供退貨處理,無法換貨或再補寄。
商品版權法律說明:
TAAZE 單純提供網路二手書託售平台予消費者,並不涉入書本作者與原出版商間之任何糾紛;敬請各界鑒察。
退換貨說明:
二手書籍商品享有10天的商品猶豫期(含例假日)。若您欲辦理退貨,請於取得該商品10日內寄回。
二手影音商品(例如CD、DVD等),恕不提供10天猶豫期退貨。
二手商品無法提供換貨服務,僅能辦理退貨。如須退貨,請保持該商品及其附件的完整性(包含書籍封底之TAAZE物流條碼)。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱
退換貨原則、
二手CD、DVD退換貨說明。