【關鍵數據分析指標】解說 + 【SQL 擷取、彙總數據】手法,
教你從枯燥的資料表中挖出對決策有幫助的資訊!
在一般使用上, SQL 還是常被當作 Web 服務的後端, 只用於 RDB (關聯式資料庫) 的查詢, 普遍缺乏將 SQL 使用在分析用途上的 Knowhow。然而目前各種大數據平台 (Apache Hadoop、Spark、Google / Amazon 的付費雲端平台…) 的盛行, 當中都少不了運用 SQL 查詢語法來擷取、分析平台上所儲存的數據, 取得重要的決策資訊。
本書涵蓋大數據平台上的 SQL 分析工具 (Apache Hive、SparkSQL、Google BigQuery、Amazon Redshift、PostgreSQL), 以滿滿的商業分析實例, 教你從看似千篇一律的網站 Log、營收數據「挖寶」, 其中包括【營收狀況分析】、社群/內容/購物網站的【使用者行為分析】、【網站營運績效分析】等, 會先介紹可派上用場的分析指標, 接著示範如何以 SQL 語法來取得這些指標所需的數據。
本書期望提供大數據分析相關知識給分析人員與工程師, 養成實務上所需的技術力與分析力, 成為活用數據、改善公司業務的關鍵人才!
●【實用分析指標解說, 養成必備數據分析力】
【營收狀況分析】
判讀營收的變化趨勢 → Z 圖表
依營收貢獻度將商品劃分等級, 判別銷售情形 → ABC 分析
精準掌握商品成長或衰退情形 → Fan chart
【社群網站、內容網站、購物網站...的使用者行為分析】
區分重度、輕度使用者, 客製化服務內容 → 十分位分析、RFM 分析
調查使用者的傾向 → 留存率、回訪率
彙總用戶消費額, 估算集客的合理成本 → ARPU 指標、LTV 指標
【網站營運績效分析】
評估網頁的內容是否夠吸引人 → 離開率、讀完率
檢測申請表單的效用, 避免申請到一半離開 → 表單跳脫率
本書特色 :
●技術力 X 分析力 的完美結合!IT、企劃分析、行銷人員一定要會的大數據分析術!
●以 split_part / URL / COALESCE / CONCAT / SIGN / greatest / least / NTILE / SUM ...等函數撰寫 SQL 查詢語法 (Query), 輕鬆獲得各項分析指標數據
●涵蓋熱門大數據分析平台, Apache Hive / Google BigQuery / SparkSQL / Amazon Redshift / PostgreSQL 全適用
目錄
第 1 章 大數據時代需要的分析力
1-1 數據分析環境的變化
1-2 大數據衍生的各種課題
第 2 章 本書所使用的工具與數據
2-1 本書所使用的系統
2-2 本書所使用的數據類型
第 3 章 使用 SQL 整理數據
3-1 單一數值的整理
3-2 多個數值的整理
3-3 對單一資料表進行操作
3-4 對複數資料表進行操作
第 4 章 營收狀態相關數據的彙總、分析
4-1 沿著時間軸蒐集數據
4-2 多面向的蒐集數據
第 5 章 使用者行為相關數據的彙總、分析
5-1 發掘全體使用者的特徵、傾向
5-2 找出全體使用者在時間軸上的變化
5-3 沿著時間軸分析使用者的個別行為
第 6 章 網站指標相關數據的彙總、分析
6-1 發掘網站的全體特徵
6-2 掌握網站內的使用者行為
6-3 申請表單的最佳化
第 7 章 提高數據使用的精確度
7-1 組合數據, 建立新的切入點
7-2 檢出異常值
7-3 檢出重複的數據
7-4 比較多個資料集
第 8 章 進階數據活用術
8-1 評估並改善搜尋功能
8-2 資料探勘(Data Mining)
8-3 推薦系統
8-4 計算分數
第 9 章 總結:活用知識採取行動
第 1 章 大數據時代需要的分析力
1-1 數據分析環境的變化
1-2 大數據衍生的各種課題
第 2 章 本書所使用的工具與數據
2-1 本書所使用的系統
2-2 本書所使用的數據類型
第 3 章 使用 SQL 整理數據
3-1 單一數值的整理
3-2 多個數值的整理
3-3 對單一資料表進行操作
3-4 對複數資料表進行操作
第 4 章 營收狀態相關數據的彙總、分析
4-1 沿著時間軸蒐集數據
4-2 多面向的蒐集數據
第 5 章 使用者行為相關數據的彙總、分析
5-1 發掘全體使用者的特徵、傾向
5-2 找出全體使用者在時間軸上的變化
5-3 沿著時間軸分析使...
購物須知
退換貨說明:
會員均享有10天的商品猶豫期(含例假日)。若您欲辦理退換貨,請於取得該商品10日內寄回。
辦理退換貨時,請保持商品全新狀態與完整包裝(商品本身、贈品、贈票、附件、內外包裝、保證書、隨貨文件等)一併寄回。若退回商品無法回復原狀者,可能影響退換貨權利之行使或須負擔部分費用。
訂購本商品前請務必詳閱退換貨原則。